Sum and product with log

Algebra Level 3

If log 18 36 = x \log_{18}36 = x and log 24 72 = y \log_{24}72 = y . Find the value of 4 ( x + y ) 5 x y . 4(x + y) -5xy.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ethan Mandelez
May 30, 2021

Pretty sure there are much simpler ways to do this, but here's my first (successful) approach:

For the working below, treat x x as u u (I don't know why I used x x )

You have shown that x = 1 + 1 1 + 2 v x = 1 + \frac1{1 + 2v} and y = 1 + v v + 3 . y = 1 + \frac v{v+3} .

Since the answer is 2, in hindsight, you can prove that ( 5 x 4 ) ( 5 y 4 ) = 6. (5x - 4)(5y - 4) = 6 .

Then expand and rearrange the terms to get the expression in question.

Pi Han Goh - 1 week, 5 days ago

That is a really good way, I didn't realize it! 👍

Ethan Mandelez - 1 week, 4 days ago
Chew-Seong Cheong
May 30, 2021

4 ( x + y ) 5 x y = 4 ( log 18 36 + log 24 72 ) 5 log 18 36 log 24 72 = 4 ( log 6 36 log 6 18 + log 6 72 log 6 24 ) 5 log 6 36 log 6 18 log 6 72 log 6 24 = 4 ( 2 log 6 3 + 1 + log 6 2 + 2 2 log 6 2 + 1 ) 5 2 log 6 3 + 1 log 6 2 + 2 2 log 6 2 + 1 = 4 log 6 2 log 6 3 + 10 log 6 2 + 8 log 6 3 4 ( 2 log 6 2 + 1 ) ( log 6 3 + 1 ) = 4 log 6 2 log 6 3 + 2 log 6 2 + 8 ( log 6 2 + log 6 3 ) 4 2 log 6 2 log 6 3 + 2 log 6 2 + log 6 3 + 1 = 4 log 6 2 log 6 3 + 2 log 6 2 + 4 2 log 6 2 log 6 3 + log 6 2 + 2 = 2 \begin{aligned} 4(x+y) - 5xy & = 4(\log_{18} 36+\log_{24} 72) - 5 \log_{18} 36\log_{24} 72 \\ & = 4 \left(\frac {\log_6 36}{\log_6 18} + \frac {\log_6 72}{\log_6 24}\right) - 5 \cdot \frac {\log_6 36}{\log_6 18} \cdot \frac {\log_6 72}{\log_6 24} \\ & = 4 \left(\frac 2{\log_6 3+1} + \frac {\log_6 2 + 2}{2\log_6 2 + 1} \right) - 5 \cdot \frac 2{\log_6 3+1} \cdot \frac {\log_6 2 + 2}{2\log_6 2 + 1} \\ & = \frac {4\log_6 2 \log_6 3+10 \log_6 2+8\log_6 3-4}{(2\log_6 2 + 1)(\log_6 3+1)} \\ & = \frac {4\log_6 2 \log_6 3+2 \log_6 2 + 8(\log_6 2+\log_6 3) -4}{2\log_6 2 \log_6 3 + 2\log_6 2 + \log_6 3+1} \\ & = \frac {4\log_6 2 \log_6 3+2 \log_6 2 + 4}{2\log_6 2 \log_6 3 + \log_6 2 +2} \\ & = \boxed 2 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...