SUM FUN

Algebra Level 4

A very interesting problem from one of my Math Worksheets:

k = 1 2014 ( k 1 ) k ! 2 k \displaystyle\sum_{k=1}^{2014} \dfrac{(k-1)k!}{2^k}

equals to a ! b c 1 \frac{a!}{b^c}-1 for positive integers a , b , c a,b,c . Find the value of a + b + c a+b+c .


The answer is 4031.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Happy Melodies
May 23, 2014

Motivations Recognise that this is a series type question (as in the tags), and one of the main ideas we should have in our mind would be to use telescope to eliminate most of the terms, leaving behind a manageable (or calculable) terms.

At first look, this question will seem daunting to most, so to start, with telescoping in mind, let's list out the first 2 2 (counting backwards) general terms.

The k th k^\text{th} term: ( k 1 ) k ! 2 k \dfrac{(k-1)k!}{2^k}

The ( k 1 ) th (k-1)^\text{th} term: ( k 2 ) ( k 1 ) ! 2 k 1 \dfrac{(k-2)(k-1)!}{2^{k-1}} .

Here, we try to relate the 2 2 terms in hopes of finding a telescoping series (using partial fractions). Since we want to relate the 2 2 terms, we can try constructing a 2 k 1 2^{k-1} in the k th k^\text{th} term: Let

( k 1 ) k ! 2 k = m 2 k + n 2 k 1 \dfrac{(k-1)k!}{2^k} = \dfrac{m}{2^k} + \dfrac{n}{2^{k-1}} .

Manipulating the above, we get: m + 2 n = ( k 1 ) k ! = ( k + 1 2 ) k ! = ( k + 1 ) k ! + 2 k ! m + 2n = (k-1)k! = (k+1-2)k! = (k+1)k! +- 2k!

Therefore, ( k 1 ) k ! 2 k = ( k + 1 ) ! 2 k k ! 2 k 1 \dfrac{(k-1)k!}{2^k} = \dfrac{(k+1)!}{2^k} - \dfrac{k!}{2^{k-1}} .

Substituting this back into our equation, we get:

k = 1 2014 ( k 1 ) k ! 2 k = 2015 ! 2 2014 2014 ! 2 2013 + 2014 ! 2 2013 . . . 2 ! 2 1 + 2 ! 2 1 1 ! 2 0 = 2015 ! 2 2014 1 \displaystyle\sum_{k=1}^{2014} \dfrac{(k-1)k!}{2^k} = \frac{2015!}{2^{2014}} - \frac{2014!}{2^{2013}} + \frac{2014!}{2^{2013}} - ... - \frac{2!}{2^1} + \frac{2!}{2^1} - \frac{1!}{2^0} = \frac{2015!}{2^{2014}} -1

Therefore, a = 2015 , b = 2 , c = 2014 a = 2015, b= 2, c=2014 and a + b + c = 4031 a+b+c = \boxed{4031} .

I think you made a mistake , there should be a minus sign when you were making the partial fractions formula.

Bogdan Simeonov - 7 years ago

Log in to reply

Yes! Sorry a typo! Edited!

Happy Melodies - 7 years ago
Kenny Lau
Jul 9, 2014

k = 1 2014 ( k 1 ) k ! 2 k = k = 1 2014 ( k + 1 2 ) k ! 2 k = k = 1 2014 ( k + 1 ) k ! 2 k ! 2 k = k = 1 2014 ( k + 1 ) ! 2 k ! 2 k = k = 1 2014 ( k + 1 ) ! 2 k k = 1 2014 2 k ! 2 k = k = 1 2014 ( k + 1 ) ! 2 k k = 1 2014 k ! 2 k 1 = k = 1 2014 ( k + 1 ) ! 2 k k = 0 2013 ( k + 1 ) ! 2 k = ( k + 1 ) ! 2 k x = 2014 ( k + 1 ) ! 2 k x = 0 = 2015 ! 2 2014 1 \begin{array}{cl} &\sum_{k=1}^{2014}\frac{(k-1)k!}{2^k}\\ =&\sum_{k=1}^{2014}\frac{(k+1-2)k!}{2^k}\\ =&\sum_{k=1}^{2014}\frac{(k+1)k!-2k!}{2^k}\\ =&\sum_{k=1}^{2014}\frac{(k+1)!-2k!}{2^k}\\ =&\sum_{k=1}^{2014}\frac{(k+1)!}{2^k}-\sum_{k=1}^{2014}\frac{2k!}{2^k}\\ =&\sum_{k=1}^{2014}\frac{(k+1)!}{2^k}-\sum_{k=1}^{2014}\frac{k!}{2^{k-1}}\\ =&\sum_{k=1}^{2014}\frac{(k+1)!}{2^k}-\sum_{k=0}^{2013}\frac{(k+1)!}{2^k}\\ =&\left.\frac{(k+1)!}{2^k}\right|_{x=2014}-\left.\frac{(k+1)!}{2^k}\right|_{x=0}\\ =&\frac{2015!}{2^{2014}}-1 \end{array}

good solution

Ronak Agarwal - 6 years, 10 months ago

k = 1 2014 ( k 1 ) k ! 2 k \displaystyle \sum_{k=1}^{2014} \frac{(k-1)k!}{2^{k}} = k = 1 2014 ( ( k + 1 1 ) k ! 2 k k ! 2 k ) =\displaystyle \sum_{k=1}^{2014} (\frac{(k+1-1)k!}{2^{k}} - \frac{k!}{2^{k}}) = k = 1 2014 ( ( k + 1 ) ! 2 k k ! 2 k 1 ) = 2015 ! 2 2014 1 =\displaystyle \sum_{k=1}^{2014} (\frac{(k+1)!}{2^{k}} - \frac{k!}{2^{k-1}}) = \frac{2015!}{2^{2014}} - 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...