Sum it again

Calculus Level 3

1 + 2 2 2 ! + 3 2 3 ! + 4 2 4 ! + \large 1+\frac{2^{2}}{2!}+\frac{3^{2}}{3!}+\frac{4^{2}}{4!}+\ldots

If the series above equals to n × e n\times e for e = lim x 0 ( 1 + 1 x ) x \displaystyle e =\lim_{x\to0} \left(1+\frac1x\right)^x , find the value of n n .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Curtis Clement
Aug 7, 2015

n = 1 n 2 n ! = n = 1 ( n 2 n ) + n n ! \displaystyle\sum_{n=1}^{\infty} \frac{n^2}{n!} = \displaystyle\sum_{n=1}^{\infty} \frac{(n^2 - n) +n}{n!} n = 3 1 ( n 2 ) ! + n = 2 1 ( n 1 ) ! = 2 n = 1 1 n ! = 2 e \ \displaystyle\sum_{n=3}^{\infty} \frac{1}{(n-2)!} +\displaystyle\sum_{n=2}^{\infty} \frac{1}{(n-1)!} = 2 \displaystyle\sum_{n=1}^{\infty} \frac{1}{n!} = \boxed{2e}

thank u for getting me rid out of this problem

sumit cooooool - 5 years, 10 months ago
Michael Mendrin
Aug 7, 2015

For this one, make use of the fact that

n 2 n n ! = 1 ( n 2 ) ! \dfrac { { n }^{ 2 }-n }{ n! } =\dfrac { 1 }{ (n-2)! }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...