Sum it up!

d 10 ! 1 d + 10 ! \large \displaystyle \sum_{d|10!} \frac{1}{d+\sqrt{10!}}

If the value of the summation above is equal to A B ! \dfrac{A}{\sqrt {B!}} , where A A and B B are integers with B B minimized, find A + B A+B .


The answer is 145.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jack Cornish
Jan 16, 2016

Nice question! The key here is to rewrite S S . Let f ( n ) = d n ! 1 d + n ! 2 f ( n ) = 2 d n ! 1 d + n ! . f(n) = \displaystyle \sum_{d|n!} \dfrac{1}{d+\sqrt{n!}} \implies 2f(n) = 2\displaystyle \sum_{d|n!} \dfrac{1}{d+\sqrt{n!}}. Now since d n ! 1 d + n ! = d n ! 1 n ! d + n ! , \displaystyle \sum_{d|n!} \dfrac{1}{d+\sqrt{n!}} = \displaystyle \sum_{d|n!} \dfrac{1}{\dfrac{n!}{d}+\sqrt{n!}} , it is easy to see that 2 f ( n ) = d n ! ( 1 d + n ! + 1 n ! d + n ! ) . 2f(n) = \displaystyle \sum_{d|n!} \left (\dfrac{1}{d+\sqrt{n!}} + \dfrac{1}{\dfrac{n!}{d}+\sqrt{n!}} \right) . Then by simplification 2 f ( n ) = d n ! ( 1 d + n ! + 1 n ! d + n ! ) = d n ! ( d + n ! d ) + 2 n ! d n ! d + ( d + n ! d ) n ! + n ! = d n ! ( d + n ! d ) + 2 n ! 2 n ! + ( d + n ! d ) n ! = d n ! 1 n ! . 2f(n) =\displaystyle \sum_{d|n!} \left( \dfrac{1}{d+\sqrt{n!}} + \dfrac{1}{\dfrac{n!}{d}+\sqrt{n!}}\right) =\sum_{d|n!} \dfrac{(d+\dfrac{n!}{d}) + 2\sqrt{n!}}{d\dfrac{n!}{d} +(d+\dfrac{n!}{d})\sqrt{n!} + n!} =\sum_{d|n!} \dfrac{(d+\dfrac{n!}{d}) + 2\sqrt{n!}}{2\cdot n! +(d+\dfrac{n!}{d})\sqrt{n!} } =\sum_{d|n!} \dfrac{1}{\sqrt{n!}}. Thus, f ( n ) = d n ! 1 2 n ! = 1 2 n ! d n ! 1. f(n) = \displaystyle \sum_{d|n!}\dfrac{1}{2\cdot\sqrt{n!}} =\dfrac{1}{2\cdot\sqrt{n!}} \displaystyle \sum_{d|n!}1 . Finally, f ( n ) = σ ( n ! ) 2 n ! f(n) = \dfrac{\sigma (n!)}{2\sqrt{n!}} and f ( 10 ) = σ ( 10 ! ) 2 10 ! = ( 8 + 1 ) ( 4 + 1 ) ( 2 + 1 ) ( 1 + 1 ) 2 10 ! = 135 10 ! . f(10) = \dfrac{\sigma (10!)}{2\sqrt{10!}} = \dfrac{(8+1)(4+1)(2+1)(1+1)}{2\sqrt{10!}} = \dfrac{135}{\sqrt{10!}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...