Sum-it-up!

Calculus Level 4

a n = i = 1 n 2 1 n + i i = 1 n 2 1 n i a_n = \dfrac{\displaystyle \sum_{i=1}^{n^2-1} \sqrt{n + \sqrt i }}{\displaystyle \sum_{i=1}^{n^2-1} \sqrt{n - \sqrt i } }

Find the limit lim n a n \displaystyle \lim_{n\to\infty} a_n .


The answer is 2.414.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jun 20, 2019

Since 1 n 5 2 i = 1 n 2 1 n + i = 1 n 2 i = 1 n 2 1 1 + i n 2 0 1 1 + x d x 1 n 5 2 i = 1 n 2 1 n i = 1 n 2 i = 1 n 2 1 1 i n 2 0 1 1 x d x \begin{aligned} \frac{1}{n^{\frac52}}\sum_{i=1}^{n^2-1}\sqrt{n + \sqrt{i}} & = \; \frac{1}{n^2} \sum_{i=1}^{n^2-1}\sqrt{1 + \sqrt{\tfrac{i}{n^2}}} \; \to \; \int_0^1 \sqrt{1 + \sqrt{x}}\,dx \\ \frac{1}{n^{\frac52}}\sum_{i=1}^{n^2-1}\sqrt{n - \sqrt{i}} & = \; \frac{1}{n^2} \sum_{i=1}^{n^2-1}\sqrt{1 - \sqrt{\tfrac{i}{n^2}}} \; \to \; \int_0^1 \sqrt{1 - \sqrt{x}}\,dx \end{aligned} as n n \to \infty , and since elementary integration gives 0 1 1 + x d x = 8 15 ( 1 + 2 ) 0 1 1 x d x = 8 15 \int_0^1 \sqrt{1 + \sqrt{x}}\,dx \; = \; \tfrac{8}{15}(1 + \sqrt{2}) \hspace{2cm} \int_0^1 \sqrt{1 - \sqrt{x}}\,dx \; = \; \tfrac{8}{15} we deduce that lim n a n = 0 1 1 + x d x 0 1 1 x d x = 1 + 2 \lim_{n \to \infty}a_n \; = \; \frac{\displaystyle \int_0^1 \sqrt{1 + \sqrt{x}}\,dx}{\displaystyle \int_0^1 \sqrt{1 - \sqrt{x}}\,dx} \; = \; \boxed{1 + \sqrt{2}}

Kartik Sharma
Jun 23, 2019

Now , we observe that the fraction " x " " y " \frac{"x"}{"y"} does not depend on the value of n. Thus, the answer will remain same even if n approaches infinity ..

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...