Sum it up

Calculus Level 4

Find the sum of the series:

2 2 1.2 × n C 0 + 2 3 2.3 × n C 1 + 2 4 3.4 × n C 2 + 2 5 4.5 × n C 3 + . . . . . n t e r m s \frac { { 2 }^{ 2 } }{ 1.2 } \times ^{ n }{ C }_{ 0 }+\frac { { 2 }^{ 3 } }{ 2.3 } { \times ^{ n }C }_{ 1 }+\frac { { 2 }^{ 4 } }{ 3.4 } { \times ^{ n }C }_{ 2 }+\frac { { 2 }^{ 5 } }{ 4.5 } { \times ^{ n }C }_{ 3 }+.\quad .\quad .\quad .\quad .\quad n\quad terms

Details and Assumptions:

n C r = n ! ( n r ) ! r ! ^{ n }{ C }_{ r }=\frac { n! }{ (n-r)!r! }

1 n ( 3 n + 1 n + 1 2 ) \frac { 1 }{ n } (\frac { { 3 }^{ n+1 } }{ n+1 } -2) 1 n ( 3 n n 2 ) \frac { 1 }{ n } (\frac { { 3 }^{ n } }{ n } -2) 1 n + 1 ( 3 n + 1 n + 1 2 ) \frac { 1 }{ n+1 } (\frac { { 3 }^{ n+1 } }{ n+1 } -2) 1 n + 1 ( 3 n + 2 n + 2 2 ) \frac { 1 }{ n+1 } (\frac { { 3 }^{ n+2 } }{ n+2 } -2)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kartik Sharma
Mar 4, 2015

Just consider the binomial expansion of ( 1 + x ) n {(1+x)}^{n} and integrate it twice!

*And then of course substitute x = 2 x = 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...