n k \sum n^k

Find the sum of all positive integers k 100 k \leq 100 such that 1 k + 2 k + 3 k + + n k 1^k + 2^k + 3^k + \dots + n^k is divisible by 1 + 2 + 3 + + n 1 + 2 + 3 + \dots + n for all positive integers n . n.


The answer is 2500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Mar 8, 2018

We will show that all odd integers between 1 and 100 inclusive work, and only these values work. Indeed, if k k were even, then we can take n = 2 n = 2 as a counterexample.

Suppose k k were an odd integer. Let N = 1 k + 2 k + 3 k + + n k 1 + 2 + 3 + + n . N = \dfrac{1^k + 2^k + 3^k + \cdots + n^k}{1 + 2 + 3 + \cdots + n}. We want to show that N N is an integer. Using the formula for the sum of the first n n positive integers, we get

N = 1 k + 2 k + 3 k + + n k n ( n + 1 ) 2 = 2 ( 1 k + 2 k + 3 k + + n k ) n ( n + 1 ) . N = \dfrac{1^k + 2^k + 3^k + \cdots + n^k}{\frac{n(n + 1)}{2}} = \dfrac{2(1^k + 2^k + 3^k + \cdots + n^k)}{n(n + 1)}.

Now, we split into cases based on the parity of n n :

Case 1: n = 2 a , n = 2a, for some positive integer a a

We have

N = 2 ( 1 k + 2 k + 3 k + + ( 2 a ) k ) 2 a ( 2 a + 1 ) = 1 k + 2 k + 3 k + + ( 2 a ) k a ( 2 a + 1 ) . N = \dfrac{2(1^k + 2^k + 3^k + \cdots + (2a)^k)}{2a(2a + 1)} = \dfrac{1^k + 2^k + 3^k + \cdots + (2a)^k}{a(2a + 1)}.

Since k k is odd, we have p k + ( ( 2 a + 1 ) p ) k 0 ( m o d 2 a + 1 ) p^k + ((2a + 1) - p)^k \equiv 0 \! \pmod{2a + 1} and p k + ( 2 a p ) k 0 ( m o d a ) , p^k + (2a - p)^k \equiv 0 \! \pmod{a}, for all positive integers p p between 1 and 2 a 2a inclusive. Thus,

1 k + 2 k + 3 k + + ( 2 a ) k ( 1 k + ( 2 a ) k ) + ( 2 k + ( 2 a 1 ) k ) + + ( a k + ( a + 1 ) k ) 0 ( m o d 2 a + 1 ) , 1^k + 2^k + 3^k + \cdots + (2a)^k \equiv (1^k + (2a)^k) + (2^k + (2a - 1)^k) + \cdots + (a^k + (a + 1)^k) \equiv 0 \! \! \! \! \pmod{2a + 1},

and

1 k + 2 k + 3 k + + ( 2 a ) k a k + ( 2 a ) k + ( 1 k + ( 2 a 1 ) k ) + ( 2 k + ( 2 a 2 ) k ) + + ( ( a 1 ) k + ( a + 1 ) k ) 0 ( m o d a ) , 1^k + 2^k + 3^k + \cdots + (2a)^k \equiv a^k + (2a)^k + (1^k + (2a - 1)^k) + (2^k + (2a - 2)^k) + \cdots + ((a - 1)^k + (a + 1)^k) \equiv 0 \! \! \! \! \pmod{a},

so we conclude that N N is an integer.

Case 2: n = 2 a + 1 n = 2a + 1 for some nonnegative integer a a

We have

N = 2 ( 1 k + 2 k + 3 k + + ( 2 a + 1 ) k ) ( 2 a + 1 ) ( 2 a + 2 ) = 1 k + 2 k + 3 k + + ( 2 a + 1 ) k ( a + 1 ) ( 2 a + 1 ) . N = \dfrac{2(1^k + 2^k + 3^k + \cdots + (2a + 1)^k)}{(2a + 1)(2a + 2)} = \dfrac{1^k + 2^k + 3^k + \cdots + (2a + 1)^k}{(a + 1)(2a + 1)}.

Similar to the n n even case, we have p k + ( ( 2 a + 2 ) p ) k 0 ( m o d a + 1 ) p^k + ((2a + 2) - p)^k \equiv 0 \! \pmod{a + 1} and p k + ( ( 2 a + 1 ) p ) k 0 ( m o d 2 a + 1 ) , p^k + ((2a + 1) - p)^k \equiv 0 \! \pmod{2a + 1}, for all positive integers p p between 1 and 2 a + 1 2a + 1 inclusive. Thus,

1 k + 2 k + 3 k + + ( 2 a + 1 ) k ( a + 1 ) k + ( 1 k + ( 2 a + 1 ) k ) + ( 2 k + ( 2 a ) k ) + + ( a k + ( a + 2 ) k ) 0 ( m o d a + 1 ) , 1^k + 2^k + 3^k + \cdots + (2a + 1)^k \equiv (a + 1)^k + (1^k + (2a + 1)^k) + (2^k + (2a)^k) + \cdots + (a^k + (a + 2)^k) \equiv 0 \! \! \! \! \pmod{a + 1},

and

1 k + 2 k + 3 k + + ( 2 a + 1 ) k ( 2 a + 1 ) k + ( 1 k + ( 2 a ) k ) + ( 2 k + ( 2 a 1 ) k ) + + ( a k + ( a + 1 ) k ) 0 ( m o d 2 a + 1 ) , 1^k + 2^k + 3^k + \cdots + (2a + 1)^k \equiv (2a + 1)^k + (1^k + (2a)^k) + (2^k + (2a - 1)^k) + \cdots + (a^k + (a + 1)^k) \equiv 0 \! \! \! \! \pmod{2a + 1},

so N N is an integer.

Therefore, 1 + 2 + 3 + + n 1 k + 2 k + 3 k + + n k 1 + 2 + 3 + \cdots + n|1^k + 2^k + 3^k + \cdots + n^k when k k is odd. This gives us a final answer of 1 + 3 + 5 + + 99 = 2500 . 1 + 3 + 5 + \cdots + 99 = \boxed{2500}.

Can only figure out "That Was odd!!" then input 5 0 2 50^2 .

The proof is so elegant! like it.

Kelvin Hong - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...