Sum of a series

A sequence { T ( n ) } n 1 \{T(n)\}_{n\geq 1} having first term T ( 1 ) = 1 T(1) = 1 has subsequent terms defined by the following recurrence relation,

T ( n + 1 ) T ( n ) = 7 + ( 1 ) n 1 4 n 1 \frac{T(n + 1)}{T(n)} = \frac{7+(-1)^{n - 1}}{4}~\forall~n\geq 1

What is the units' digit of the sum of the first 2014 terms of the above defined sequence ?


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Okay, so looking at the function, we have the following:

T ( n + 1 ) = T ( n ) ( 7 + ( 1 ) n 1 4 ) T(n+1)=T(n)(\frac{7+(-1)^{n-1}}{4})

Which means that if n is odd, then we have T(n+1)=2T(n) and if n is even, T(n+1)=3/2T(n). We compute the first and last few terms:

1 , 2 , 3 , 6 , 9 , 18 , 27 , 54 , . . . 3 1006 , 2 3 1006 1,2,3,6,9,18,27,54,...3^{1006},2 \cdot 3^{1006}

So if we want to find the units digit we pair the numbers as the following:

1 + 2 + 3 + 6 + 9 + 18 + . . . 3 1006 + 2 3 1006 = ( 1 + 3 + 9 + 27 + . . . + 3 1006 ) + ( 2 + 6 + 18 + 54 + . . . + 2 3 1006 ) = 3 ( 1 + 3 + 9 + 27 + 81 + . . . + 3 2006 ) = 3 + 9 + 27 + 81 + 243 + . . . + 3 1007 1+2+3+6+9+18+...3^{1006}+2 \cdot 3^{1006}=(1+3+9+27+...+3^{1006})+(2+6+18+54+...+2 \cdot 3^{1006})=3(1+3+9+27+81+...+3^{2006})=3+9+27+81+243+...+3^{1007}

So we want to find the units digit of this sum. Notice that the units digit of powers of 3 occurs in a pattern: 3,9,7,1,3,9,7,1... and so on. Notice 3+9+7+1=20 which means, if we group by 4s, each group of 4's units digit is 0, therefore not having an overall effect on the sum's units digit. To see what I mean, because I know I make no sense sometimes, see the following:

3 + 9 + 27 + 81 + 243 + . . . + 3 1007 ( 3 + 9 + 7 + 1 ) + ( 3 + 9 + 7 + 1 ) + . . . + ( 3 + 9 + 7 + 1 ) + 3 + 9 + 7 20 + 20 + 20 + . . . + 20 + 19 19 9 m o d ( 10 ) 3+9+27+81+243+...+3^{1007} \equiv (3+9+7+1)+(3+9+7+1)+...+(3+9+7+1)+3+9+7 \equiv 20+20+20+...+20+19 \equiv 19 \equiv \boxed{9} \mod (10)

T ( n + 1 ) T ( n ) = 7 + ( 1 ) n 1 4 T ( n + 1 ) = 7 + ( 1 ) n 1 4 T ( n ) T ( 1 ) = 1 T ( 2 ) = 7 + ( 1 ) 0 4 T ( 1 ) = 2 ( 1 ) = 2 T ( 3 ) = 7 + ( 1 ) 1 4 T ( 2 ) = 6 4 ( 2 ) = 3 T ( 4 ) = 2 ( 3 ) = 6 T ( 5 ) = 3 2 ( 6 ) = 9 T ( 6 ) = 18 T ( 7 ) = 27 T ( 8 ) = 54 T ( 9 ) = 81 \begin{aligned} \frac{T(n+1)}{T(n)} & = \frac{7+(-1)^{n-1}}{4} \\ \Rightarrow T(n+1) & = \frac{7+(-1)^{n-1}}{4} T(n) \\ \Rightarrow T(1) & = 1 \\ T(2) & = \frac{7+(-1)^0}{4}T(1) = 2(1) = 2 \\ T(3) & = \frac{7+(-1)^1}{4}T(2) = \frac{6}{4}(2) = 3 \\ T(4) & = 2(3) = 6 \\ T(5) & = \frac{3}{2}(6) = 9 \\ T(6) & = 18 \\ T(7) & = 27 \\ T(8) & = 54 \\ T(9) & = 81 \end{aligned}

Let the sum of the 2014 terms be S S , then we have:

S = n = 1 2014 T ( n ) = 1 + 2 + 3 + 6 + 9 + 18 + 27 + 54 + 81 + 162 + . . . + 3 1006 + 2 ( 3 1006 ) = 3 ( 1 ) + 3 ( 3 ) + 3 ( 9 ) + 3 ( 27 ) + 3 ( 81 ) + . . . + 3 ( 3 1006 ) = 3 ( 1 + 9 ) + 3 ( 3 + 27 ) + 3 ( 81 + 729 ) + . . . + 3 ( 3 1004 + 3 1006 ) + 3 ( 3 1005 ) = 3 ( 10 ) + 3 ( 40 ) + 3 ( 810 ) + . . . + 3 ( 10 ) ( 3 1004 ) + 3 ( 3 1005 ) \begin{aligned} S & = \sum_{n=1}^{2014} T(n) \\ & = \color{#3D99F6}{1 + 2} + \color{#D61F06}{3 + 6} + \color{#3D99F6}{9 + 18} + \color{#D61F06}{27 + 54} + \color{#3D99F6}{81 + 162} + ... + \color{#D61F06}{3^{1006} + 2 \left( 3^{1006} \right)} \\ & = \color{#3D99F6}{3(1)} + \color{#D61F06}{3(3)} + \color{#3D99F6}{3(9)} + \color{#D61F06}{3(27)} + \color{#3D99F6}{3(81)} + ... + \color{#D61F06}{3 \left( 3^{1006} \right)} \\ & = \color{#3D99F6}{3(1+9)} + \color{#D61F06}{3(3+27)} + \color{#3D99F6}{3(81+729)} + ... + \color{#D61F06}{3\left( 3^{1004}+3^{1006}\right)} + \color{#3D99F6}{3 \left( 3^{1005} \right)} \\ & = \color{#3D99F6}{3(10)} + \color{#D61F06}{3(40)} + \color{#3D99F6}{3(810)} + ... + \color{#3D99F6}{3(10)\left( 3^{1004}\right)} + \color{#D61F06}{3 \left( 3^{1005} \right)} \end{aligned}

S 3 1006 ( m o d 10 ) Since 3 and 10 are coprimes, by Euler’s Totient Theorem: 3 ϕ 10 3 4 1 ( m o d 10 ) 3 4 × 251 + 2 ( m o d 10 ) 9 ( m o d 10 ) \begin{aligned} \Rightarrow S & \equiv 3^{1006} \pmod{10} \quad \quad \small \color{#3D99F6}{\text{Since 3 and 10 are coprimes, by Euler's Totient Theorem: } 3^{\phi 10} \equiv 3^4 \equiv 1 \pmod{10} } \\ & \equiv 3^{4 \times 251+2} \pmod{10} \\ & \equiv \boxed{9} \pmod{10} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...