Sum of All the Roots

Algebra Level 2

Solve the system of equations below. Submit the sum of all roots as answer.

\[\begin{cases}\sqrt{1+x_1} + \sqrt{1 +x_2} + \sqrt{1 +x_3} +\dots+\sqrt{ 1 + x_{2020}} = \sqrt{ 2020\times2021} \\

\sqrt{1 - x_1} + \sqrt{1 - x_2} + \sqrt{1 -x_3} +\dots+\sqrt{ 1 - x_{2020}} = \sqrt{2020\times2019}\end{cases}\]


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 14, 2020

By AM-GM inequality , we have:

{ 1 + x 1 + 1 + x 2 + 1 + x 3 + + 1 + x 2020 2020 n = 1 2020 1 + x n 2020 = 2020 × 2021 1 x 1 + 1 x 2 + 1 x 3 + + 1 x 2020 2020 n = 1 2020 1 x n 2020 = 2020 × 2019 \begin{cases} \sqrt{1+x_1} + \sqrt{1+x_2} + \sqrt{1+x_3} + \cdots + \sqrt{1+x_{2020}} & \ge \displaystyle 2020 \sqrt[2020]{\prod_{n=1}^{2020}\sqrt{1+x_n}} = \sqrt{2020 \times 2021} \\ \sqrt{1-x_1} + \sqrt{1-x_2} + \sqrt{1-x_3} + \cdots + \sqrt{1-x_{2020}} & \ge \displaystyle 2020 \sqrt[2020]{\prod_{n=1}^{2020}\sqrt{1-x_n}} = \sqrt{2020 \times 2019} \end{cases}

Equality in both cases occur when x 1 = x 2 = x 3 = = x 2020 = 1 2020 x_1 = x_2 = x_3 = \cdots = x_{2020} = \dfrac 1{2020} . Therefore they are the roots of the system of equations, and the sum of all roots is 2020 2020 = 1 \dfrac {2020}{2020} = \boxed 1 .

This solution is inspired in Hana's one. First of all, note that, for any a > 0 a>0 ,

(1) 1 + x = a 1 / 2 ( 1 + x ) a a 1 / 2 ( 1 + x + a 2 ) \sqrt{1+x} = a^{-1/2}\sqrt{(1+x)a} \leq a^{-1/2}(\frac{1+x+a}{2}) .

Therefore,

(2) 2020 × 2021 = i = 1 2020 1 + x i a 1 / 2 i = 1 2020 ( 1 + x i + a 2 ) = 1 2 a 1 / 2 [ 2020 ( 1 + a ) + i = 1 2020 x i ] \sqrt{2020\times 2021} = \sum_{i=1}^{2020}\sqrt{1+x_i} \leq a^{-1/2}\sum_{i=1}^{2020}(\frac{1+x_i+a}{2}) = \frac{1}{2}a^{-1/2}[2020(1+a) + \sum_{i=1}^{2020}x_i] ,

so that

(3) i = 1 2020 x i 2 a 1 / 2 2020 × 2021 2020 ( 1 + a ) \sum_{i=1}^{2020}x_i \geq 2a^{1/2}\sqrt{2020\times 2021} - 2020(1+a) .

Likewise, for any b > 0 b>0 ,

(4) 1 x = b 1 / 2 ( 1 x ) b b 1 / 2 ( 1 x + b 2 ) \sqrt{1-x} = b^{-1/2}\sqrt{(1-x)b} \leq b^{-1/2}(\frac{1-x+b}{2}) ,

so that

(5) 2020 × 2019 = i = 1 2020 1 x i b 1 / 2 i = 1 2020 ( 1 x i + b 2 ) = 1 2 b 1 / 2 [ 2020 ( 1 + b ) i = 1 2020 x i ] \sqrt{2020\times 2019} = \sum_{i=1}^{2020}\sqrt{1-x_i} \leq b^{-1/2}\sum_{i=1}^{2020}(\frac{1-x_i+b}{2}) = \frac{1}{2}b^{-1/2}[2020(1+b) - \sum_{i=1}^{2020}x_i] ,

from which follows

(6) i = 1 2020 x i 2020 ( 1 + b ) 2 b 1 / 2 2020 × 2019 \sum_{i=1}^{2020}x_i \leq 2020(1+b) - 2b^{1/2}\sqrt{2020\times 2019} .

Combining (3) and (6) we obtain

(7) 2 a 1 / 2 2020 × 2021 2020 ( 1 + a ) i = 1 2020 x i 2020 ( 1 + b ) 2 b 1 / 2 2020 × 2019 2a^{1/2}\sqrt{2020\times 2021} - 2020(1+a) \leq \sum_{i=1}^{2020}x_i \leq 2020(1+b) - 2b^{1/2}\sqrt{2020\times 2019} .

Now, the magic: if we choose a = 2021 2020 a = \frac{2021}{2020} and b = 2019 2020 b = \frac{2019}{2020} , the double inequality (7) becomes

(8) 1 i = 1 2020 x i 1 1 \leq \sum_{i=1}^{2020}x_i \leq 1 ,

which implies i = 1 2020 x i = 1 \sum_{i=1}^{2020}x_i = 1 . \square

Hana Wehbi
May 15, 2020

\[\begin{cases}\sqrt{1+x_1} + \sqrt{1 +x_2} + \sqrt{1 +x_3} +\dots+\sqrt{ 1 + x_{2020}} = \sqrt{ 2020(2020+1)} \\

\sqrt{1 - x_1} + \sqrt{1 - x_2} + \sqrt{1 -x_3} +\dots+\sqrt{ 1 - x_{2020}} = \sqrt{2020(2020-1)}\end{cases}\]

Applying Cauchy's Inequality , we have:

\[\begin{cases}\sqrt {(1+x_1)\frac{2020+1}{2020}} \le \frac{1}{2} ( 1+x_1+\frac{2020+1}{2020})\\

\hspace{3cm}\dots \\

\hspace{3cm}\dots\\

\sqrt {(1+x_{2020})\frac{2020+1}{2020}} \le \frac{1}{2} ( 1+x_{2020}+\frac{2020+1}{2020})\end{cases}\]

It follows:

2020 + 1 2020 2020 ( 2020 + 1 ) = 2020 + 1 1 2 ( 2 ( 2020 ) + 1 + x 1 + x 2 + + x 2020 ) ( 1 ) \sqrt{\frac{2020+1}{2020}} \sqrt{2020(2020+1)} = 2020 +1 \le \frac{1}{2} \Big( 2( 2020 ) + 1+x_1+x_2+\dots+x_{2020}\Big) \dots (1)

Similarly we have:

2020 1 2020 2020 ( 2020 1 ) = 2020 1 1 2 ( 2 ( 2020 ) 1 x 1 x 2 x 2020 ) ( 2 ) \sqrt{\frac{2020-1}{2020}} \sqrt{2020(2020-1)} = 2020 - 1 \le \frac{1}{2} \Big( 2( 2020 ) - 1 - x_1 - x_2 - \dots - x_{2020}\Big)\dots (2)

Form ( 1 ) and ( 2 ) (1) \text{ and } (2) , we get:

2 ( 2020 ) 1 2 ( 4 ( 2020 ) + 1 + x 1 + x 2 + x 3 + + x 2020 1 x 1 x 2 x 2020 ) = 2 ( 2020 ) 2 (2020) \le \frac{1}{2} \Big( 4(2020) +1+x_1+x_2+x_3+\dots+x_{2020}-1-x_1-x_2-\dots-x_{2020}\Big) = 2(2020)

This equality happens if x 1 = x 2 = = x 2020 = 1 2020 i = 1 2020 x i = 2020 ( 1 2020 ) = 1 x_1=x_2=\dots=x_{2020}=\frac{1}{2020}\implies \sum_{i=1}^{2020} x_i = 2020\Big(\frac{1}{2020}\Big) = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...