Solve the system of equations below. Submit the sum of all roots as answer.
\[\begin{cases}\sqrt{1+x_1} + \sqrt{1 +x_2} + \sqrt{1 +x_3} +\dots+\sqrt{ 1 + x_{2020}} = \sqrt{ 2020\times2021} \\
\sqrt{1 - x_1} + \sqrt{1 - x_2} + \sqrt{1 -x_3} +\dots+\sqrt{ 1 - x_{2020}} = \sqrt{2020\times2019}\end{cases}\]
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This solution is inspired in Hana's one. First of all, note that, for any a > 0 ,
(1) 1 + x = a − 1 / 2 ( 1 + x ) a ≤ a − 1 / 2 ( 2 1 + x + a ) .
Therefore,
(2) 2 0 2 0 × 2 0 2 1 = ∑ i = 1 2 0 2 0 1 + x i ≤ a − 1 / 2 ∑ i = 1 2 0 2 0 ( 2 1 + x i + a ) = 2 1 a − 1 / 2 [ 2 0 2 0 ( 1 + a ) + ∑ i = 1 2 0 2 0 x i ] ,
so that
(3) ∑ i = 1 2 0 2 0 x i ≥ 2 a 1 / 2 2 0 2 0 × 2 0 2 1 − 2 0 2 0 ( 1 + a ) .
Likewise, for any b > 0 ,
(4) 1 − x = b − 1 / 2 ( 1 − x ) b ≤ b − 1 / 2 ( 2 1 − x + b ) ,
so that
(5) 2 0 2 0 × 2 0 1 9 = ∑ i = 1 2 0 2 0 1 − x i ≤ b − 1 / 2 ∑ i = 1 2 0 2 0 ( 2 1 − x i + b ) = 2 1 b − 1 / 2 [ 2 0 2 0 ( 1 + b ) − ∑ i = 1 2 0 2 0 x i ] ,
from which follows
(6) ∑ i = 1 2 0 2 0 x i ≤ 2 0 2 0 ( 1 + b ) − 2 b 1 / 2 2 0 2 0 × 2 0 1 9 .
Combining (3) and (6) we obtain
(7) 2 a 1 / 2 2 0 2 0 × 2 0 2 1 − 2 0 2 0 ( 1 + a ) ≤ ∑ i = 1 2 0 2 0 x i ≤ 2 0 2 0 ( 1 + b ) − 2 b 1 / 2 2 0 2 0 × 2 0 1 9 .
Now, the magic: if we choose a = 2 0 2 0 2 0 2 1 and b = 2 0 2 0 2 0 1 9 , the double inequality (7) becomes
(8) 1 ≤ ∑ i = 1 2 0 2 0 x i ≤ 1 ,
which implies ∑ i = 1 2 0 2 0 x i = 1 . □
\[\begin{cases}\sqrt{1+x_1} + \sqrt{1 +x_2} + \sqrt{1 +x_3} +\dots+\sqrt{ 1 + x_{2020}} = \sqrt{ 2020(2020+1)} \\
\sqrt{1 - x_1} + \sqrt{1 - x_2} + \sqrt{1 -x_3} +\dots+\sqrt{ 1 - x_{2020}} = \sqrt{2020(2020-1)}\end{cases}\]
Applying Cauchy's Inequality , we have:
\[\begin{cases}\sqrt {(1+x_1)\frac{2020+1}{2020}} \le \frac{1}{2} ( 1+x_1+\frac{2020+1}{2020})\\
\hspace{3cm}\dots \\
\hspace{3cm}\dots\\
\sqrt {(1+x_{2020})\frac{2020+1}{2020}} \le \frac{1}{2} ( 1+x_{2020}+\frac{2020+1}{2020})\end{cases}\]
It follows:
2 0 2 0 2 0 2 0 + 1 2 0 2 0 ( 2 0 2 0 + 1 ) = 2 0 2 0 + 1 ≤ 2 1 ( 2 ( 2 0 2 0 ) + 1 + x 1 + x 2 + ⋯ + x 2 0 2 0 ) … ( 1 )
Similarly we have:
2 0 2 0 2 0 2 0 − 1 2 0 2 0 ( 2 0 2 0 − 1 ) = 2 0 2 0 − 1 ≤ 2 1 ( 2 ( 2 0 2 0 ) − 1 − x 1 − x 2 − ⋯ − x 2 0 2 0 ) … ( 2 )
Form ( 1 ) and ( 2 ) , we get:
2 ( 2 0 2 0 ) ≤ 2 1 ( 4 ( 2 0 2 0 ) + 1 + x 1 + x 2 + x 3 + ⋯ + x 2 0 2 0 − 1 − x 1 − x 2 − ⋯ − x 2 0 2 0 ) = 2 ( 2 0 2 0 )
This equality happens if x 1 = x 2 = ⋯ = x 2 0 2 0 = 2 0 2 0 1 ⟹ i = 1 ∑ 2 0 2 0 x i = 2 0 2 0 ( 2 0 2 0 1 ) = 1
Problem Loading...
Note Loading...
Set Loading...
By AM-GM inequality , we have:
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ 1 + x 1 + 1 + x 2 + 1 + x 3 + ⋯ + 1 + x 2 0 2 0 1 − x 1 + 1 − x 2 + 1 − x 3 + ⋯ + 1 − x 2 0 2 0 ≥ 2 0 2 0 2 0 2 0 n = 1 ∏ 2 0 2 0 1 + x n = 2 0 2 0 × 2 0 2 1 ≥ 2 0 2 0 2 0 2 0 n = 1 ∏ 2 0 2 0 1 − x n = 2 0 2 0 × 2 0 1 9
Equality in both cases occur when x 1 = x 2 = x 3 = ⋯ = x 2 0 2 0 = 2 0 2 0 1 . Therefore they are the roots of the system of equations, and the sum of all roots is 2 0 2 0 2 0 2 0 = 1 .