Sum of an infinite series

Calculus Level 4

1 3 × 0 ! + 1 4 × 1 ! + 1 5 × 2 ! + 1 6 × 3 ! + 1 7 × 4 ! + = ? \frac 1{3\times{0!}}+\frac 1{4\times{1!}}+\frac 1{5\times{2!}}+\frac 1{6\times{3!}}+\frac 1{7\times{4!}}+\cdots=?

Report your answer to 5 places after decimal


The answer is 0.71828.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider the following Maclaurin series :

k = 0 x k + 2 k ! = x 2 e x Integrate both sides w.r.t x k = 0 x k + 3 ( k + 3 ) k ! = x 2 e x 2 x e x + 2 e x + C where C is the constant of integration. 0 = 2 + C Putting x = 0 C = 2 k = 0 1 ( k + 3 ) k ! = e 2 e + 2 e 2 Putting x = 1 = e 2 0.71828 \begin{aligned} \sum_{k=0}^\infty \frac {x^{k+2}}{k!} & = x^2e^x & \small \color{#3D99F6} \text{Integrate both sides w.r.t }x \\ \sum_{k=0}^\infty \frac {x^{k+3}}{(k+3)k!} & = x^2e^x - 2xe^x + 2e^x + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ 0 & = 2 + C & \small \color{#3D99F6} \text{Putting }x = 0 \implies C = -2 \\ \sum_{k=0}^\infty \frac 1{(k+3)k!} & = e - 2e + 2e - 2 & \small \color{#3D99F6} \text{Putting }x = 1 \\ & = e - 2 \approx \boxed{0.71828} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...