Sum of arctangents equals to pi/4

Geometry Level 5

arctan ( 1 a ) + arctan ( 1 b ) + arctan ( 1 c ) = π 4 \arctan\left(\frac{1}{a}\right)+\arctan\left(\frac{1}{b}\right)+\arctan\left(\frac{1}{c}\right)=\frac{\pi}{4}

Let a , b , c a,b,c be positive integers where 1 < a b c 1 < a \le b\le c such that the equation above is fulfilled. If we denote P = a × b × c P = a\times b\times c , find the sum of all possible values of P P .


The answer is 247.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chan Lye Lee
Oct 25, 2015

Suppose a 4 a\ge 4 . Then 1 4 1 a 1 b 1 c \frac{1}{4}\ge \frac{1}{a}\ge \frac{1}{b}\ge \frac{1}{c} .

Then 3 arctan ( 1 4 ) arctan ( 1 a ) + arctan ( 1 b ) + arctan ( 1 c ) = π 4 3\arctan\left(\frac{1}{4}\right)\ge \arctan\left(\frac{1}{a}\right)+\arctan\left(\frac{1}{b}\right)+\arctan\left(\frac{1}{c}\right)=\frac{\pi}{4}

This is impossible as tan π 12 = 2 3 > 1 4 \tan\frac{\pi}{12}=2-\sqrt{3}>\frac{1}{4} .

Hence a = 2 a=2 or a = 3 a=3 .

Using the formula arctan x + arctan y = arctan x + y 1 x y \arctan x+\arctan y = \arctan \frac{ x + y}{1- xy} repeatly, we have arctan ( a b + b c + c a 1 a b c a b c ) = π 4 \arctan\left(\frac{ab+bc+ca-1}{abc-a-b-c}\right)=\frac{\pi}{4} . This means that a b + b c + c a 1 = a b c a b c ab+bc+ca-1=abc-a-b-c . We can rewrite it as

c = ( a + 1 ) ( b + 1 ) 2 ( a 1 ) ( b 1 ) 2 c=\frac{(a+1)(b+1)-2}{(a-1)(b-1)-2}

If a = 2 a=2 , then c = 3 b + 1 b 3 = 3 + 10 b 3 c=\frac{3b+1}{b-3}=3+\frac{10}{b-3} . The possible values of ( a , b , c ) (a,b,c) are ( 2 , 4 , 13 ) (2,4,13) and ( 2 , 5 , 8 ) (2,5,8) .

If a = 3 a=3 , then c = 2 b + 1 b 2 = 2 + 5 b 2 c=\frac{2b+1}{b-2}=2+\frac{5}{b-2} . The possible value of ( a , b , c ) (a,b,c) is ( 3 , 3 , 7 ) (3,3,7) .

As such, P = 2 ( 4 ) ( 13 ) + 2 ( 5 ) ( 8 ) + 3 ( 3 ) ( 7 ) = 247 P=2(4)(13)+2(5)(8)+3(3)(7)=247 .

What made you think the assumption that a>=4

Aakash Khandelwal - 5 years, 7 months ago

Log in to reply

We know that a a can not be too big... just try for some... and you will find that 4 is a good number...

Chan Lye Lee - 5 years, 7 months ago

I got these values but thought that P=abc meant strung together not multiplied... :-(

Terry Smith - 5 years, 7 months ago

Log in to reply

I made some changes on the question and hope that it is clearer.

Chan Lye Lee - 5 years, 7 months ago
Arjen Vreugdenhil
Oct 29, 2015

From tan ( α + β + γ ) = tan α + tan β + tan γ tan α tan β tan γ 1 tan α tan β tan β tan γ tan γ tan α , \tan(\alpha + \beta + \gamma) = \frac{\tan\alpha+\tan\beta+\tan\gamma-\tan\alpha\tan\beta\tan\gamma}{1-\tan\alpha\tan\beta-\tan\beta\tan\gamma-\tan\gamma\tan\alpha}, it follows that the equation is satisfied if 1 = 1 a + 1 b + 1 c 1 a 1 b 1 c 1 1 a 1 b 1 b 1 c 1 c 1 a ; 1 = \frac{\tfrac1a+\tfrac1b+\tfrac1c-\tfrac1a\tfrac1b\tfrac1c}{1-\tfrac1a\tfrac1b-\tfrac1b\tfrac1c-\tfrac1c\tfrac1a}; we multiply denominator and numerator with a b c abc and equate them: a b + b c + c a 1 = a b c a b c . ab + bc + ca - 1 = abc - a - b - c. At least one of a , b , c a, b, c should be fairly small; otherwise a b c abc becomes much greater than any of the terms on the left. We will therefore go through all possible values of a a , and solve for ( b , c ) (b, c) . Thus we write the equation as ( a 1 ) b c ( a + 1 ) ( b + c ) ( a 1 ) = 0 , b c a + 1 a 1 ( b + c ) 1 = 0 , ( b a + 1 a 1 ) ( c a + 1 a 1 ) = 1 + ( a + 1 a 1 ) 2 . (a-1)bc - (a+1)(b+c) - (a-1) = 0, \\ bc - \frac{a+1}{a-1}(b+c) - 1 = 0, \\ \left(b - \frac{a+1}{a-1}\right)\left(c - \frac{a+1}{a-1}\right) = 1+\left(\frac{a+1}{a-1}\right)^2. The solutions can only be integers if a 1 a + 1 a-1|a+1 , which requires that a 1 2 a-1|2 , or a = 2 , 3 a = 2, 3 .

This limits the possibilities severely! a = 2 ( b 3 ) ( c 3 ) = 10 = 2 5 b = 5 , c = 8 80 = 1 10 b = 4 , c = 13 104 a = 3 ( b 2 ) ( c 2 ) = 5 = 1 5 b = 3 , c = 7 63 \begin{array}{lllll} \hline a = 2 & (b-3)(c-3) = 10 & = 2\cdot 5 & b = 5,\ c = 8 & 80 \\ & & = 1\cdot 10 & b = 4,\ c = 13 & 104 \\ a = 3 & (b-2)(c-2) = 5 & = 1\cdot 5 & b = 3,\ c = 7 & 63 \\ \hline \end{array} The total of possible values of a b c abc is therefore 247 \boxed{247} .

Best solution here!

I wonder whether you can use the same approach for the sum of n n arctangent functions = pi/4.

Pi Han Goh - 5 years, 7 months ago
Menachem Avinoam
Oct 27, 2015

I solved it with:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
var piOverFour=Math.PI/4;
var results=[];
for(var a=1;a<100;a++)for(var b=1;b<100;b++)for(var c=1;c<100;c++)
{
    if(a>b||a>c||b>c)continue;
    var r=Math.atan(1/a)+Math.atan(1/b)+Math.atan(1/c);
    if(r+0.00000001>piOverFour&&r-0.00000001<piOverFour)//allow for some JavaScript margin of error
    {
        console.log([a,b,c]);
        results.push([a,b,c]);
    }
}
var result=0;
for(var i=0;i<results.length;i++)
{
    var r=results[i][0]*results[i][1]*results[i][2];
    console.log(r);
    result+=r;
}
console.log('result: '+result);

The significance of (2, 4, 13), (2, 5, 8) and (3, 3, 7) is we can draw three triangles to add up a 45 degrees and there are three sets of such numbers available. However, 45 degrees is simple angle to make. But thinking about inserting triangular woods to stabilize things may seem useful.

Lu Chee Ket - 5 years, 7 months ago

Using calculator, we have:-
A r c t a n ( 1 / 2 ) = 26.5650 5 o . . . . . . . . . . . . . . . A r c t a n ( 1 / 3 ) = 18.4349 4 o . . . . . . . . . . . . . A r c t a n ( 1 / 4 ) = 14.0362 4 o B u t 45 / 3 = 1 5 o . . . . . a = 2 , 0 r a = 3 , o n l y , a n d b 2. O n e o f t h e a n g l e m u s t b e 26.5650 5 o . . . O R . . . 18.4349 4 o , N o t e : A r c t a n ( 1 / 2 ) + A r c t a n ( 1 / 3 ) = 4 5 o ! ! ! Arctan(1/2)=26.56505^o...............Arctan(1/3)=18.43494^o.............Arctan(1/4)=14.03624^o\\ But~45/3=15^o.....\implies~~a=2,~0r~a=3,~ only,~ and~ b\neq 2.\\ \implies~One~ of~ the~ angle~ must ~be ~26.56505^o...~ OR~ ...18.43494^o,\\ Note:- Arctan(1/2)+Arctan(1/3)= 45^o !!!\\ U s i n g a = 2 n e x t b = 4 , 45 A r c t a n ( 1 / 2 ) A r c t a n ( 1 / 4 ) = 4.398705355. 1 T a n 4.398705355 = 13. So the first set is P 1 = 2 4 13 = 104. Using~a=2 ~next~b=4,~~ 45 - Arctan(1/2) - Arctan(1/4) =4.398705355.~~~\dfrac 1{Tan4.398705355}=13. \\ \text{So the first set is } P_1=2*4*13=\color{#3D99F6}{104}.\\ N e x t i n l i n e i s b = 5 45 A r c t a n ( 1 / 2 ) A r c t a n ( 1 / 5 ) = 7.125016349. 1 T a n 7.125016349 = 8. So the second set is P 2 = 2 5 8 = 80. Next~ in~ line~ is~b=5~~~~45 - Arctan(1/2)- Arctan(1/5)=7.125016349.~~~~~\dfrac 1 {Tan7.125016349}=8.\\ \text{So the second set is } P_2=2*5*8=\color{#3D99F6}{80}.\\ N e x t i n l i n e i s c = 1 T a n { 45 A r c t a n ( 1 / 2 ) A r c t a n ( 1 / 6 ) } = 6 1 3 . c can not be 6 nor 7. So we have come to the limit for a=2. N e x t , a = 3 a n d b = 3 , c = 1 T a n { 45 2 A r c t a n ( 1 / 3 ) } = 7 The third set is P 3 = 3 3 7 = 63. a = 3 a n d n e x t b = 4 , c = 1 T a n { 45 A r c t a n ( 1 / 3 ) A r c t a n ( 1 / 4 ) } = 4 1 2 . c can not be 4 nor 5. So we have come to the limit for a=3. P 1 + P 2 + P 3 = 104 + 80 + 63 = 147. Next~ in~ line~ is~c=\dfrac 1 {Tan\{45 - Arctan(1/2)- Arctan(1/6)\}}=6\frac1 3.\\ \text{c can not be 6 nor 7. So we have come to the limit for a=2.} \\ Next,~a=3~and~ b=3,~~~c=\dfrac 1 {Tan\{45 - 2* Arctan(1/3)\}}= 7\\ \text{The third set is } P_3=3*3*7=\color{#3D99F6}{63}.\\ a=3~and~next~ b=4,~~~c=\dfrac 1 {Tan\{45 - Arctan(1/3) - Arctan(1/4)\}}= 4\frac 1 2. \\ \text{c can not be 4 nor 5. So we have come to the limit for a=3.} \\ P_1+P_2+P_3=104+80+63=\Large~~~~~\color{#D61F06}{147}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...