Sum of complex numbers

Algebra Level 3

Let z = 1 3 i z=1-3i , then find the value of

1 z + 2 z 2 + 3 z 3 + 4 z 4 + . . . \large \frac{1}{z} + \frac{2}{z^2}+\frac {3}{z^3} + \frac{4}{z^4}+...

9 9 \infty 0 0 3 i 1 9 \frac{3i-1}{9} 3 i 3i

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 21, 2016

S = 1 z + 2 z 2 + 3 z 3 + 4 z 4 + . . . = n = 1 n z n = n = 0 n z n = n = 1 n + 1 z n + 1 = 1 z n = 1 n z n + 1 z n = 1 1 z n = 1 z S + 1 z n = 1 1 z n ( z 1 ) S = n = 1 1 z n = 1 1 1 z = z z 1 S = z ( z 1 ) 2 = 1 3 i ( 3 i ) 2 = 3 i 1 9 \begin{aligned} S & = \frac 1z + \frac 2{z^2} + \frac 3{z^3} + \frac 4{z^4} + ... \\ & = \sum_{\color{#3D99F6}n=1}^\infty \frac n{z^n} \\ & = \sum_{\color{#D61F06}n=0}^\infty \frac n{z^n} \\ & = \sum_{\color{#3D99F6}n=1}^\infty \frac {n+1}{z^{n+1}} \\ & = \frac 1z \sum_{\color{#3D99F6} n=1}^\infty \frac n{z^n} + \frac 1z \sum_{n=1}^\infty \frac 1{z^n} \\ & = \frac 1z S + \frac 1z \sum_{n=1}^\infty \frac 1{z^n} \\ (z-1)S & = \sum_{n=1}^\infty \frac 1{z^n} = \frac 1{1-\frac 1z} = \frac z{z-1} \\ \implies S & = \frac z{(z-1)^2} = \frac {1-3i}{(-3i)^2} = \boxed{\dfrac {3i-1}9} \end{aligned}

Nice solution, got my vote and Thank you.

Hana Wehbi - 4 years, 6 months ago
Hana Wehbi
Nov 21, 2016

Let x = 1 z + 2 z 2 + 3 z 3 + 4 z 4 + . . . \large x= \frac {1}{z}+\frac{2}{z^2}+\frac{3}{z^3}+\frac{4}{z^4}+... ;

Multiply x b y z \large x \ by \ z to get x z = 1 + 2 z + 3 z 2 + 4 z 3 + . . . \large xz= 1+ \frac{2}{z}+\frac{3}{z^2}+\frac{4}{z^3}+...

Subtract x z x = 1 + 1 z + 1 z 2 + 1 z 3 + . . . \large xz -x = 1+ \frac{1}{z}+\frac{1}{z^2}+\frac{1}{z^3}+... , which is a geometric series with a 1 = 1 a n d r = 1 z \large a_1= 1 and\ r=\frac{1}{z} ,

thus, x z x = 1 1 1 z = z ( z 1 ) \large xz-x= \frac{1}{1-\frac{1}{z}} = \large \frac{z}{(z-1)} , (the infinite sum of a geometric series = a 1 1 r \large\frac{a_1}{1-r} ),

solving for x \large x we get x = z ( z 1 ) 2 \large x= \large \frac{z}{(z-1)^2} .

Plugging in the value of z = 1 3 i \large z = 1-3i , we get x = 1 3 i ( 1 3 i 1 ) 2 = 3 i 1 9 \large x= \frac{1-3i}{(1-3i-1)^2}=\boxed{ \frac {3i-1}{9}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...