Sum of cosines

Geometry Level 5

A = cos ( 13 π 20 ) + cos ( 21 π 20 ) + cos ( 29 π 20 ) + cos ( 37 π 20 ) A=\cos\left(\frac{13\pi}{20}\right) +\cos\left(\frac{21\pi}{20}\right) +\cos\left(\frac{29\pi}{20}\right) +\cos\left(\frac{37\pi}{20}\right)

Find the value of 1000 A \lfloor 1000A \rfloor .


Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is -708.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

A = cos ( 13 π 20 ) + cos ( 21 π 20 ) + cos ( 29 π 20 ) + cos ( 37 π 20 ) = cos ( 2 π 5 + π 4 ) + cos ( 4 π 5 + π 4 ) + cos ( 6 π 5 + π 4 ) + cos ( 8 π 5 + π 4 ) = 1 2 ( cos ( 2 π 5 ) sin ( 2 π 5 ) + cos ( 4 π 5 ) sin ( 4 π 5 ) + cos ( 6 π 5 ) sin ( 6 π 5 ) + cos ( 8 π 5 ) sin ( 8 π 5 ) ) = 1 2 ( cos ( 2 π 5 ) + cos ( 4 π 5 ) + cos ( 6 π 5 ) + cos ( 8 π 5 ) sin ( 2 π 5 ) sin ( 4 π 5 ) sin ( 6 π 5 ) sin ( 8 π 5 ) ) = 1 2 ( cos ( 2 π 5 ) + cos ( 4 π 5 ) cos ( π 5 ) cos ( 3 π 5 ) sin ( 3 π 5 ) sin ( π 5 ) + sin ( π 5 ) + sin ( 3 π 5 ) ) See proof below. = 1 2 ( 1 2 1 2 ) = 1 2 0.7071 \begin{aligned} A & = \cos \left(\frac {13\pi}{20}\right) + \cos \left(\frac {21\pi}{20}\right) + \cos \left(\frac {29\pi}{20}\right) + \cos \left(\frac {37\pi}{20}\right) \\ & = \cos \left(\frac {2\pi}5 + \frac \pi 4\right) + \cos \left(\frac {4\pi}5 + \frac \pi 4\right) + \cos \left(\frac {6\pi}5 + \frac \pi 4\right) + \cos \left(\frac {8\pi}5 + \frac \pi 4\right) \\ & = \frac 1{\sqrt 2} \left( \cos \left(\frac {2\pi}5 \right) - \sin \left(\frac {2\pi}5 \right) + \cos \left(\frac {4\pi}5\right) - \sin \left(\frac {4\pi}5 \right) + \cos \left(\frac {6\pi}5\right) - \sin \left(\frac {6\pi}5 \right) + \cos \left(\frac {8\pi}5\right) - \sin \left(\frac {8\pi}5 \right) \right) \\ & = \frac 1{\sqrt 2} \left( \cos \left(\frac {2\pi}5 \right) + \cos \left(\frac {4\pi}5\right) + \cos \left(\frac {6\pi}5\right) + \cos \left(\frac {8\pi}5\right) - \sin \left(\frac {2\pi}5 \right) - \sin \left(\frac {4\pi}5 \right) - \sin \left(\frac {6\pi}5 \right) - \sin \left(\frac {8\pi}5 \right) \right) \\ & = \frac 1{\sqrt 2} \left({\color{#3D99F6}\cos \left(\frac {2\pi}5 \right) + \cos \left(\frac {4\pi}5\right)}{\color{#D61F06} - \cos \left(\frac {\pi}5\right) - \cos \left(\frac {3\pi}5\right)} - \sin \left(\frac {3\pi}5 \right) - \sin \left(\frac {\pi}5 \right) + \sin \left(\frac {\pi}5 \right) + \sin \left(\frac {3\pi}5 \right) \right) & \small \color{#3D99F6} \text{See proof below.} \\ & = \frac 1{\sqrt 2} \left({\color{#3D99F6}-\frac 12}{\color{#D61F06} - \frac 12} \right) = - \frac 1{\sqrt 2} \approx - 0.7071 \end{aligned}

Therefore, 1000 A = 708 \lfloor 1000A\rfloor = \boxed{-708} .


Reference: Proof for k = 0 n 1 cos ( 2 k + 1 2 n + 1 ) = 1 2 \displaystyle \sum_{k=0}^{n-1} \cos \left(\frac {2k+1}{2n+1}\right) = \frac 12

Chan Lye Lee
Aug 2, 2018

Note that the 5 roots of z 5 = 1 + i 2 \displaystyle z^5 = \frac{1+i}{\sqrt{2}} are e i ( 8 k + 5 ) π 20 \displaystyle e^{i \frac{(8k+5)\pi}{20}} where k = 0 , 1 , 2 , 3 , 4 k=0,1,2,3,4 .

The sum of roots is 0, by Vieta formula, which implies that the real part of the sum is also 0. Hence k = 0 4 Re ( e i ( 8 k + 5 ) π 20 ) = 0 \displaystyle \sum_{k=0}^4 \text{Re} \left(e^{i \frac{(8k+5)\pi}{20}}\right) =0 . Now

cos ( 5 π 20 ) + cos ( 13 π 20 ) + cos ( 21 π 20 ) + cos ( 29 π 20 ) + cos ( 37 π 20 ) = 0 \cos\left(\frac{5\pi}{20}\right) + \cos\left(\frac{13\pi}{20}\right) +\cos\left(\frac{21\pi}{20}\right) +\cos\left(\frac{29\pi}{20}\right) +\cos\left(\frac{37\pi}{20}\right)=0

So, A = cos ( 13 π 20 ) + cos ( 21 π 20 ) + cos ( 29 π 20 ) + cos ( 37 π 20 ) = cos ( 5 π 20 ) = 1 2 0.7071 A= \cos\left(\frac{13\pi}{20}\right) +\cos\left(\frac{21\pi}{20}\right) +\cos\left(\frac{29\pi}{20}\right) +\cos\left(\frac{37\pi}{20}\right)=-\cos\left(\frac{5\pi}{20}\right) =-\frac{1}{\sqrt{2}} \approx -0.7071

Finally, 1000 A = 707.1 = 708 \lfloor 1000A \rfloor = \lfloor -707.1 \rfloor = \boxed{-708} .

Naren Bhandari
Aug 2, 2018

A = cos ( 13 π 20 ) + cos ( 21 π 20 ) + cos ( 29 π 20 ) + cos ( 37 π 20 ) = 2 cos ( 50 π 40 ) cos ( 24 π 40 ) + 2 cos ( 50 π 40 ) cos ( 8 π 40 ) = 2 cos 5 π 4 { cos ( 3 π 5 ) + cos ( π 5 ) } = 2 2 cos ( 5 π 4 ) = cos ( π + π 4 ) = 1 2 = 0.7071067812 \begin{aligned} A & =\cos\left(\frac{13\pi}{20}\right) +\cos\left(\frac{21\pi}{20}\right) +\cos\left(\frac{29\pi}{20}\right) +\cos\left(\frac{37\pi}{20}\right)\\ & = 2\cos \left(\dfrac{50\pi }{40}\right) \cdot\cos \left(\dfrac{24\pi }{40}\right) + 2\cos \left(\dfrac{50\pi }{40}\right) \cdot \cos \left(\dfrac{8\pi }{40}\right) \\ & = 2\cos \dfrac{5\pi }{4}\left\{ \cos \left(\dfrac{3\pi }{5}\right)+\cos \left(\dfrac{\pi }{5}\right) \right\} \\ & = \dfrac{2}{2} \cos \left(\dfrac{5\pi}{4}\right) = \cos \left(\pi + \dfrac{\pi}{4}\right) =- \dfrac{1}{\sqrt 2} = - 0.7071067812 \end{aligned} Therefore, 1000 A = 707.1067812 = 708 \left\lfloor 1000A \right\rfloor\ = \left\lfloor- 707.1067812 \right\rfloor= \boxed{-708 }


Note cos ( π 5 ) = 1 2 sin 2 ( π 10 ) = 1 2 ( 5 1 4 ) 2 = 5 + 1 4 = ϕ 2 cos ( 3 π 5 ) = sin ( π 2 + π 10 ) = sin ( π 10 ) = ( 5 1 4 ) = 1 5 4 = ϕ 1 2 cos ( π 5 ) + cos ( 3 π 5 ) = 5 + 1 4 + 1 5 4 = 1 2 \cos \left(\dfrac{\pi}{5} \right) = 1 - 2 \sin ^2 \left(\dfrac{\pi}{10}\right) = 1 - 2\left(\dfrac{\sqrt 5 -1}{4}\right)^2 = \dfrac{\sqrt 5 +1}{4} = \dfrac{\phi}{2} \\ \cos \left(\dfrac{3\pi}{5}\right) =- \sin \left(\dfrac{\pi}{2} + \dfrac{\pi}{10}\right)= - \sin \left(\dfrac{\pi}{10}\right) = -\left(\dfrac{\sqrt 5-1 }{4 }\right) = \dfrac{1- \sqrt 5}{4}=-\dfrac{\phi^{-1}}{2} \\ \cos \left( \dfrac{\pi}{5} \right) + \cos \left(\dfrac{3\pi}{5}\right) = \dfrac{\sqrt 5+1}{4} + \dfrac{1- \sqrt 5 }{4}=\dfrac{1}{2}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...