Sum of digits

How many integers n n are there such that sum of digits of n 2 n^2 is 2000?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kushal Bose
Dec 5, 2016

As n n is a positive integer so n 2 = a k a k 1 a k 2 . . . . . a 2 a 1 n^2=\overline{a_k a_{k-1} a_{k-2} .....a_2 a_1} .

n 2 = 1 0 k 1 a k + 1 0 k 2 a k 1 + . . . . . . + 10 a 2 + a 1 n^2=10^{k-1} a_k +10^{k-2} a_{k-1} +......+ 10 a_2 +a_1

n 2 = 9 l + r = 1 k a r \implies n^2=9 l + \sum_{r=1}^{k} a_r

n 2 = 9 l + 2000 \implies n^2=9 l +2000

So it seems there is no solution but if 9 l 9 l ends with 8000 8000 there may exists a solution.

Consider 9 l = X 8000 9 l=\overline{X8000} where X X is any integer So, 1000 l 1000\, |\, l where

l = ( 111....11 a k + 111...11 a k 1 + . . . . . + 111 a 4 + 11 a 3 + a 2 l=(\underbrace{111....11}a_k + \underbrace{111...11} a_{k-1} + .....+111 a_4+11a_3 +a_2

l = 111...000 a k + 111...000 a k 1 + . . . . + 111 a k + 111 a k 1 + . . . 111 a 4 + 11 a 3 + a 2 l=\underbrace{111...000}a_k + \underbrace{111...000}a_{k-1} + ....+ 111a_k +111a_{k-1}+...111a_4 +11a_3+a_2

l = 1000 m + 111 ( a k + a k 1 + . . . + a 5 + a 4 ) + 11 a 3 + a 2 l=1000m +111(a_k +a_{k-1}+...+a_5+a_4)+11 a_3 +a_2

l = 1000 m + 111 ( 2000 a 3 a 2 a 1 ) + 11 a 3 + a 2 l=1000m +111(2000 -a_3-a_2-a_1)+11 a_3+a_2

l = 1000 m 100 a 3 110 a 2 111 a 1 = 1000 m 100 ( a 3 + a 2 + a 1 ) 10 a 2 11 a 1 l=1000m' -100 a_3 -110a_2-111 a_1 =1000m' -100(a_3+a_2+a_1)-10a_2-11 a_1

Now 1000 100 ( a 3 + a 2 + a 1 ) + 10 a 2 + 11 a 1 1000 | 100(a_3+a_2+a_1)+10a_2+11 a_1 . The first two term ends with zero but last does not.if a 1 = 0 a_1=0 then a 2 = 0 a_2=0 beacuse n 2 n^2 is perfect square..So a 3 a_3 should be 10 10 which is not possible.So , 1000 ∤ l 1000 \not | l .

So our assumption is wrong no such n n exists.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...