Sum of digits

Let f ( n ) f(n) mean the sum of n n 's digits, where n n is a natural number.

For example: f ( 12 ) = 1 + 2 = 3 , f ( 2017 ) = 2 + 0 + 1 + 7 = 10 f(12)=1+2=3, f(2017)=2+0+1+7=10 .

Is the next sentence true or false?

There exist three different positive integers ( x , y , z ) (x, y, z) , such that x + f ( x ) = y + f ( y ) = z + f ( z ) x+f(x)=y+f(y)=z+f(z) .

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Áron Bán-Szabó
Jun 27, 2017

Yes, there exist. Here is an example:

{ x = 999 999 999 999 891 y = 999 999 999 999 900 z = 1 000 000 000 000 008 \large \begin{cases} x=999\space999\space999\space999\space891 \\ y=999\space999\space999\space999\space900 \\ z=1\space000\space000\space000\space000\space008 \end{cases}

Now x + f ( x ) = y + f ( y ) = z + f ( z ) = 1000000000000017 x+f(x)=y+f(y)=z+f(z)=1 000 000 000 000 017

Using full induction we can prove that for every k k positive integer there exist x 1 , x 2 , x 3 , , x k x_1, x_2, x_3, \dots, x_k positive natural numbers such that x 1 + f ( x 1 ) = x 2 + f ( x 2 ) = = x k + f ( x k ) x_1+f(x_1)=x_2+f(x_2)=\dots=x_k+f(x_k) .

This is surprising! How did you find these integers?

Pi Han Goh - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...