Sum of digits? No Calculator Needed.

Compute the sum of digits in the following difference:

55555 55555 Number of 5s = 2018 6 2 44444 44444 Number of 4s =2018 5 2 = ? \large \underbrace{55555\cdots55555}_{\text{Number of 5s = 2018}}6^2- \underbrace{44444\cdots44444} _{\text{Number of 4s =2018}}5^2=?


The answer is 4038.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 12, 2018

D = 55555 55555 Number of 5s = 2018 6 2 44444 44444 Number of 4s =2018 5 2 = ( 55555 55555 Number of 5s = 2018 6 44444 44444 Number of 4s =2018 5 ) ( 55555 55555 Number of 5s = 2018 6 + 44444 44444 Number of 4s =2018 5 ) = 11111 11111 Number of 1s = 2019 × 1 00000 00000 Number of 0s =2018 1 = 11111 11111 Number of 1s = 4038 \begin{aligned} D & = \underbrace{55555\cdots55555}_{\text{Number of 5s = 2018}}6^2- \underbrace{44444\cdots44444} _{\text{Number of 4s =2018}}5^2 \\ & = \big(\underbrace{55555\cdots55555}_{\text{Number of 5s = 2018}}6 - \underbrace{44444\cdots44444} _{\text{Number of 4s =2018}}5\big) \big(\underbrace{55555\cdots55555}_{\text{Number of 5s = 2018}}6 + \underbrace{44444\cdots44444} _{\text{Number of 4s =2018}}5\big) \\ & = \underbrace{11111\cdots 11111}_{\text{Number of 1s = 2019}}\times1\underbrace{00000\cdots 00000} _{\text{Number of 0s =2018}}1 \\ & = \underbrace{11111\cdots 11111}_{\text{Number of 1s = 4038}} \end{aligned}

Therefore the sum of digits of D D is 4038 \boxed{4038} .

Thank you, nice solution. The problem is original, l hope you liked it. I will post a solution later on that inspired me to write this problem.

Hana Wehbi - 2 years, 10 months ago

Log in to reply

Glad that you like the solution. Nice problem.

Chew-Seong Cheong - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...