Sum of Sines (to the fourth power)

Geometry Level 4

Without the use of software, find the value of:
sin 4 1 + sin 4 2 + sin 4 3 + . . . + sin 4 8 7 + sin 4 8 8 + sin 4 8 9 \sin^4 1^\circ +\sin^{4} 2^\circ+\sin^{4} 3^\circ + ... + \sin^{4} 87^\circ +\sin^{4} 88^\circ+ \sin^{4} 89^\circ


The answer is 33.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Using the fact that sin n ( x ) = cos n ( 90 x ) \sin^{n}(x) = \cos^{n}(90-x) for any real value of n, you can replace any sin 4 ( x ) \sin^{4}(x) in the series where x 46 x \geq 46 with cos 4 ( 90 x ) \cos^{4}(90-x)
This allows us to "pair" cosines with sines of the same input value, only the term sin 4 ( 45 ) \sin^{4}(45) is not able to be paired.
so k = 1 89 ( sin 4 k ) = k = 1 44 ( sin 4 k + cos 4 k ) + sin 4 ( 45 ) \displaystyle\sum_{k=1}^{89} (\sin^{4}k) = \displaystyle\sum_{k=1}^{44}( \sin^{4}k +\cos^{4}k ) + \sin^{4}(45)
Letting x = sin 2 k x = \sin^{2}k and y = cos 2 k y = \cos^{2}k , sin 4 k + cos 4 k = x 2 + y 2 = ( x + y ) 2 2 x y = ( sin 2 k + cos 2 k ) 2 2 sin 2 k cos 2 k \sin^{4}k +\cos^{4}k = x^{2}+y^{2} = (x+y)^{2} - 2xy = (\sin^{2}k +\cos^{2}k)^{2} -2 \sin^{2}k \cos^{2}k
This can be simplified to 1 2 sin 2 k cos 2 k 1-2 \sin^{2}k \cos^{2}k by the Pythagorean identity. you can also sub sin 2 k cos 2 k = sin 2 k 4 \sin^{2}k \cos^{2}k = \frac{\sin^{2}k}{4}
Now we have k = 1 89 ( sin 4 k ) = k = 1 44 ( sin 4 k + cos 4 k ) + sin 4 ( 45 ) = k = 1 44 ( 1 1 2 sin 2 ( 2 k ) ) + sin 4 ( 45 ) \displaystyle\sum_{k=1}^{89} (\sin^{4}k) = \displaystyle\sum_{k=1}^{44}( \sin^{4}k +\cos^{4}k ) + \sin^{4}(45) = \displaystyle\sum_{k=1}^{44}(1- \frac{1}{2}\sin^{2}(2k)) +\sin^{4}(45)
k = 1 44 ( 1 1 2 sin 2 ( 2 k ) ) = k = 1 44 ( 1 ) 1 2 k = 1 44 sin 2 ( 2 k ) \displaystyle\sum_{k=1}^{44}(1-\frac{1}{2} \sin^{2}(2k)) = \displaystyle\sum_{k=1}^{44}(1) - \frac{1}{2} \displaystyle\sum_{k=1}^{44}\sin^{2}(2k)
Now notice that using sin 2 ( x ) = cos 2 ( 90 x ) \sin^{2}(x) = \cos^{2}(90-x) all of the sines in the series may be paired with a cosine of the same input, giving:
k = 1 44 sin 2 ( 2 k ) = k = 1 22 ( sin 2 ( 2 k ) + cos 2 ( 2 k ) ) = k = 1 22 ( 1 ) = 22 \displaystyle\sum_{k=1}^{44}\sin^{2}(2k) = \displaystyle\sum_{k=1}^{22}(\sin^{2}(2k)+\cos^{2}(2k)) = \displaystyle\sum_{k=1}^{22}(1) = 22 Substituting and simplifying: k = 1 44 ( 1 ) 1 2 k = 1 44 sin 2 ( 2 k ) + sin 4 ( 45 ) = ( 44 ) ( 22 2 ) + ( 1 4 ) = 33.25 \displaystyle\sum_{k=1}^{44}(1) - \frac{1}{2} \displaystyle\sum_{k=1}^{44}\sin^{2}(2k) +\sin^{4}(45) = (44)-(\frac{22}{2})+(\frac{1}{4}) = 33.25


S = k = 1 89 sin 4 k = k = 1 44 sin 4 k + sin 4 4 5 + k = 46 89 sin 4 k Since sin ( 9 0 θ ) = cos θ = k = 1 44 sin 4 k + 1 4 + k = 1 44 cos 4 k = k = 1 44 ( sin 4 k + cos 4 k ) + 1 4 As ( sin 2 θ + cos 2 θ ) 2 = sin 4 θ + 2 sin 2 θ cos 2 θ + cos 4 θ = k = 1 44 ( 1 2 sin 2 k cos 2 k ) + 0.25 Note that sin 2 θ = 2 sin θ cos θ = 44.25 1 2 k = 1 44 sin 2 2 k And sin 2 θ = 1 2 ( 1 cos 2 θ ) = 44.25 1 4 k = 1 44 ( 1 cos 4 k ) = 33.25 1 4 k = 1 44 cos 4 k Using k = a b f ( k ) = k = a b f ( a + b k ) = 33.25 1 2 k = 1 44 ( cos 4 k + cos ( 18 0 4 k ) ) Note that cos ( 18 0 θ ) = cos θ = 33.25 1 2 k = 1 44 ( cos 4 k cos 4 k ) = 33.25 \begin{aligned} S & = \sum_{k=1}^{89} \sin^4 k^\circ \\ & = \sum_{k=1}^{44} \sin^4 k^\circ + \sin^4 45^\circ + \color{#3D99F6} \sum_{k=46}^{89} \sin^4 k^\circ & \small \color{#3D99F6} \text{Since }\sin (90^\circ - \theta) = \cos \theta \\ & = \sum_{k=1}^{44} \sin^4 k^\circ + \frac 14 + \color{#3D99F6} \sum_{k=1}^{44} \cos^4 k^\circ \\ & = \sum_{k=1}^{44} \left({\color{#3D99F6}\sin^4 k^\circ + \cos^4 k^\circ}\right) + \frac 14 & \small \color{#3D99F6} \text{As }(\sin^2 \theta+\cos^2 \theta)^2 = \sin^4 \theta + 2 \sin^2 \theta \cos^2 \theta + \cos^4 \theta \\ & = \sum_{k=1}^{44} \left({\color{#3D99F6}1-2\sin^2 k^\circ \cos^2 k^\circ}\right) + 0.25 & \small \color{#3D99F6} \text{Note that } \sin 2\theta = 2\sin \theta \cos \theta \\ & = 44.25 - \color{#3D99F6} \frac 12 \sum_{k=1}^{44} \sin^2 2k^\circ & \small \color{#3D99F6} \text{And } \sin^2 \theta = \frac 12(1 - \cos 2\theta) \\ & = 44.25 - \color{#3D99F6} \frac 14 \sum_{k=1}^{44} \left(1-\cos 4k^\circ \right) \\ & = 33.25 - \color{#3D99F6} \frac 14 \sum_{k=1}^{44} \cos 4k^\circ & \small \color{#3D99F6} \text{Using } \sum_{k=a}^b f(k) = \sum_{k=a}^b f(a+b-k) \\ & = 33.25 - \color{#3D99F6} \frac 1{\color{#D61F06}2} \sum_{k=1}^{44} \left(\cos 4k^\circ + \color{#D61F06} \cos (180^\circ - 4k^\circ) \right) & \small \color{#D61F06} \text{Note that } \cos (180^\circ - \theta) = - \cos \theta \\ & = 33.25 - \color{#3D99F6} \frac 12 \sum_{k=1}^{44} \left(\cos 4k^\circ \color{#D61F06} - \cos 4k^\circ \right) \\ & = \boxed{33.25} \end{aligned}

Brian Moehring
Aug 7, 2018

First we use the double-angle identities to show sin 4 k = ( 1 2 1 2 cos ( 2 k ) ) 2 = 1 4 1 2 cos ( 2 k ) + 1 4 cos 2 ( 2 k ) = 1 4 1 2 cos ( 2 k ) + 1 4 ( 1 2 + 1 2 cos ( 4 k ) ) = 3 8 1 2 cos ( 2 k ) + 1 8 cos ( 4 k ) \begin{aligned} \sin^4 k &= \left(\frac{1}{2} - \frac{1}{2}\cos(2k)\right)^2 \\ &= \frac{1}{4} - \frac{1}{2}\cos(2k) + \frac{1}{4}\cos^2(2k) \\ &= \frac{1}{4} - \frac{1}{2}\cos(2k) + \frac{1}{4}\left(\frac{1}{2} + \frac{1}{2}\cos(4k)\right) \\ &= \frac{3}{8} - \frac{1}{2}\cos(2k) + \frac{1}{8}\cos(4k) \end{aligned}

Then k = 1 89 sin 4 k = k = 1 89 ( 3 8 1 2 cos ( 2 k ) + 1 8 cos ( 4 k ) ) = 3 8 ( 89 ) 1 2 k = 1 89 cos ( 2 k ) + 1 8 k = 1 89 cos ( 4 k ) \sum_{k=1}^{89} \sin^4k = \sum_{k=1}^{89} \left(\frac{3}{8} - \frac{1}{2}\cos(2k) + \frac{1}{8}\cos(4k)\right) = \frac{3}{8}(89) - \frac{1}{2}\sum_{k=1}^{89}\cos(2k) + \frac{1}{8}\sum_{k=1}^{89}\cos(4k) and to evaluate this, we can compute each of the two remaining sums separately as k = 1 89 cos ( 2 k ) = cos ( 2 ( 45 ) ) + k = 1 44 ( cos ( 2 k ) + cos ( 180 2 k ) ) = 0 + k = 1 44 ( 0 ) = 0 \sum_{k=1}^{89}\cos(2k) = \cos(2(45)) + \sum_{k=1}^{44}\left(\cos(2k) + \cos(180-2k)\right) = 0 + \sum_{k=1}^{44} (0) = 0 k = 1 89 cos ( 4 k ) = ( k = 1 360 / 4 cos ( 4 k ) ) cos ( 360 ) = 0 1 = 1. \sum_{k=1}^{89}\cos(4k) = \left(\sum_{k=1}^{360/4}\cos(4k)\right) - \cos(360) = 0 - 1 = -1.

Putting it all back into our equation for the sum, we have k = 1 89 sin 4 k = 3 8 ( 89 ) 1 2 ( 0 ) + 1 8 ( 1 ) = 133 4 = 33.25 \sum_{k=1}^{89} \sin^4k = \frac{3}{8}(89) - \frac{1}{2}(0) + \frac{1}{8}(-1) = \frac{133}{4} = \boxed{33.25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...