Fractions With Twists And Turns

Algebra Level 4

cyc a b c + 1 \large \displaystyle \sum_{\text {cyc}} \dfrac{a}{bc+1} Let a , b a,b and c c be positive reals satisfying a + b + c = 3 a+b+c=3 .

Find the minimum value of the expression above.

Bonus : Find as many approaches as possible


This problem was taken from Hanoi grade 10 selection test for specialized students


The answer is 1.50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Classical Inequalities - Problem Solving - Intermediate

cyc a , b , c a b c + 1 = cyc a , b , c a 2 a b c + a Titu’s Lemma ( a + b + c ) 2 3 a b c + ( a + b + c ) cyc a , b , c a b c + 1 3 a b c + 1 \sum^{a,b,c}_{\text{cyc}}\frac{a}{bc+1}=\sum^{a,b,c}_{\text{cyc}}\frac{a^2}{abc+a}\stackrel{\text{Titu's Lemma}}\geq\frac{(a+b+c)^2}{3abc+(a+b+c)}\\ \sum^{a,b,c}_{\text{cyc}}\frac{a}{bc+1}\geq \frac{3}{abc+1} Now: a + b + c 3 AM-GM a b c 3 a b c + 1 ( a + b + c 3 ) 3 + 1 3 a b c + 1 1 ( a + b + c 3 ) 3 + 1 3 a b c + 1 3 2 \begin{aligned} \frac{a+b+c}{3}&\stackrel{\text{AM-GM}}\geq \sqrt[3]{abc}\\ \implies abc+1&\leq \left(\frac{a+b+c}{3}\right)^3+1\\ \frac{3}{abc+1}&\geq \frac{1}{\left(\frac{a+b+c}{3}\right)^3+1}\\ \implies \frac{3}{abc+1}&\geq \frac{3}{2}\end{aligned} Equality occurs when a = b = c a=b=c

Ankit Kumar Jain
Jun 4, 2016

We can rewrite it as :

a 2 a b c + a + b 2 a b c + b + c 2 a b c + c \dfrac{a^2}{abc + a} + \dfrac{b^2}{abc + b} + \dfrac{c^2}{abc + c} Call it S S .


By Titu's Lemma ,

S ( a + b + c ) 2 3 a b c + a + b + c = 9 3 a b c + 3 = 3 a b c + 1 S \geq \dfrac{(a + b + c)^2}{3abc + a + b + c} = \dfrac{9}{3abc + 3} = \dfrac{3}{abc + 1} .


By AM - GM Inequality , we have ,

a + b + c 3 a b c 3 a + b + c \geq 3 \cdot \sqrt[3]{abc}

1 a b c 2 a b c + 1 2 3 a b c + 1 3 \Rightarrow 1 \geq abc \Rightarrow 2 \geq abc + 1 \Rightarrow \dfrac{2}{3} \geq \dfrac{abc + 1}{3}

3 2 3 a b c + 1 \Rightarrow \dfrac{3}{2}\leq \dfrac{3}{abc + 1}

Therefore , S 3 2 S \geq \dfrac{3}{2}

Equality holds when a = b = c = 1 \boxed{a = b = c = 1}

Moderator note:

That's a great application of Titu's Lemma. For inequalities involving fractions, it often helps to "standardize" the terms while making the numerator a perfect square, so that we can apply Titu.

Nice solution! +1

P C - 5 years ago

Log in to reply

@Gurīdo Cuong Thanks !!

Ankit Kumar Jain - 5 years ago

Did the same

Aditya Kumar - 5 years ago

@Calvin Lin Sir, now that I am quite acquainted with LATEX , shall I remove the pic and write it in LATEX code ?

Ankit Kumar Jain - 4 years, 3 months ago

Log in to reply

Yes please. Thanks!

Calvin Lin Staff - 4 years, 3 months ago

Log in to reply

@Calvin Lin Done it.

Ankit Kumar Jain - 4 years, 3 months ago
P C
Jun 4, 2016

Here's my U.C.T approach c y c a , b , c a b c + 1 AM-GM c y c a , b , c a ( b + c ) 2 4 + 1 = c y c a , b , c 4 a ( 3 a ) 2 + 4 = c y c a , b , c 4 a a 2 6 a + 13 \displaystyle\sum_{cyc}^{a,b,c} \frac{a}{bc+1}\stackrel{\text{AM-GM}}\geq\displaystyle\sum_{cyc}^{a,b,c}\frac{a}{\frac{(b+c)^2}{4}+1}=\displaystyle\sum_{cyc}^{a,b,c} \frac{4a}{(3-a)^2+4}=\displaystyle\sum_{cyc}^{a,b,c} \frac{4a}{a^2-6a+13} Now we must prove that 4 a a 2 6 a + 13 1 2 + 3 2 ( a 1 ) \frac{4a}{a^2-6a+13}\geq \frac{1}{2}+\frac{3}{2}(a-1) ( a 1 ) 2 ( 3 a 13 ) a 2 6 a + 13 0 ( T r u e f o r e v e r y 0 < x < 3 ) \Leftrightarrow \frac{-(a-1)^2(3a-13)}{a^2-6a+13}\geq 0 \ ( True \ for \ every \ 0<x<3) Proving the similar for 4 b b 2 6 b + 13 \frac{4b}{b^2-6b+13} and 4 c c 2 6 c + 13 \frac{4c}{c^2-6c+13} then combine all 3 inequalities we get c y c a , b , c a b c + 1 c y c a , b , c 4 a a 2 6 a + 13 3 2 \displaystyle\sum_{cyc}^{a,b,c} \frac{a}{bc+1}\geq\displaystyle\sum_{cyc}^{a,b,c} \frac{4a}{a^2-6a+13}\geq\frac{3}{2} So the minimum value is 3 2 = 1.50 \frac{3}{2}=1.50 , the equality holds when a = b = c = 1 a=b=c=1

How do know that 4 a a 2 6 a + 13 1 2 + 3 2 ( a 1 ) \dfrac{4a}{a^2-6a+13} \geq \dfrac12 + \dfrac32 (a-1) in the first place?

Pi Han Goh - 5 years ago

Log in to reply

I predict that the equality case happens at a = b = c = 1 a=b=c=1 , so I replace a = 1 a=1 in to the L H S LHS and get 1 2 \frac{1}{2} , proving L S H 1 2 LSH\geq\frac{1}{2} would be impossible since it gives you ( a 1 ) ( a 13 ) a 2 6 a + 13 0 \frac{-(a-1)(a-13)}{a^2-6a+13}\geq 0 which is not always true with a ( 0 ; 3 ) a\in (0;3) . So now I need to choose 2 number m , n m,n that satisfy L H S 1 2 + m a + n LHS\geq \frac{1}{2}+ma+n Doing the same with b , c b,c then combine all the inequalities we get c y c a , b , c 4 a a 2 6 a + 13 3 2 + m ( a + b + c ) + 3 n = 3 2 + 3 ( m + n ) \displaystyle\sum_{cyc}^{a,b,c} \frac{4a}{a^2-6a+13}\geq\frac{3}{2}+m(a+b+c)+3n=\frac{3}{2}+3(m+n) We need 3 ( m + n ) = 0 m = n 3(m+n)=0\Rightarrow m=-n , Replace this into the inequality above and we get this 4 a a 2 6 a + 13 1 2 + m ( a 1 ) \frac{4a}{a^2-6a+13}\geq \frac{1}{2}+m(a-1) ( a 1 ) ( a 13 a 2 6 a + 13 + m ) 0 \Leftrightarrow -(a-1)\bigg(\frac{a-13}{a^2-6a+13}+m\bigg)\geq 0 To create ( a 1 ) 2 (a-1)^2 on the L H S LHS , we plug a = 1 a=1 into a 13 a 2 6 a + 13 = 3 2 \frac{a-13}{a^2-6a+13}=\frac{-3}{2} , so m = 3 2 m=\frac{3}{2} 4 a a 2 6 a + 13 1 2 + 3 2 ( a 1 ) \therefore \frac{4a}{a^2-6a+13}\geq\frac{1}{2}+\frac{3}{2}(a-1)

P C - 5 years ago

Log in to reply

This is the basic concept of UCT, if you want to know

P C - 5 years ago

What U.C.T stands for ?

Aditya Sky - 5 years ago

Log in to reply

Undefined coefficient technique

P C - 5 years ago

Log in to reply

Can you help contribute to a wiki of undefined coefficient technique ?

Calvin Lin Staff - 4 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...