Find the number of ordered quadruplets of distinct positive integers ( a , b , c , d ) to the equation a 1 + b 1 + c 1 + d 1 = 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
W e k n o w ( I ) 1 / 2 + 1 / 2 = 1 , ( I I ) 1 / 3 + 2 / 3 = 1 ( I I I ) 1 / 4 + 3 / 4 = 1 . . . . . . . . . . . . . W L O G a < b < c < d a l l i n t e g e r s . . . . . . ( ∗ ) A l l o u r n u m e r a t o r s m u s t b e 1 . . . . . . . . . . . ( ∗ ∗ ) 1 / a + 1 / b + 1 / c + 1 / d = 1 . . . . . . . . . . . ( ∗ ∗ ∗ ) ∵ of (*), (II) a=3 and b, c, d has to be greater than 3. So maximum we get is1/2+1/4+1/5+1/6<1. No solution by (***). I n t h e s a m e w a y o n l y a = 2 i s p o s s i b l e . With a=2, maximum we can get is 1/2+1/3+1/4+1/5>1. So we try out our options . ( A ) a = 2 , b = 3 : − 1 − ( 1 / 2 + 1 / 3 ) = 1 / 6 . S o 1 / c + 1 / d = 1 / 6 . L e t c = 7 . 1 / 6 − 1 / 7 = 1 / 4 2 . S o ( 2 , 3 , 7 , 4 2 ) i s t h e s o l u t i o n . . . . . . 1 L e t c = 8 . 1 / 6 − 1 / 8 = 1 / 2 4 . S o ( 2 , 3 , 8 , 2 4 ) i s t h e s o l u t i o n . . . . . . 2 L e t c = 9 . 1 / 6 − 1 / 9 = 1 / 1 8 . S o ( 2 , 3 , 9 , 1 8 ) i s t h e s o l u t i o n . . . . . . 3 L e t c = 1 0 . 1 / 6 − 1 / 1 0 = 1 / 1 5 . S o ( 2 , 3 , 1 0 , 1 5 ) i s t h e s o l u t i o n . . . . . 4 L e t c = 1 1 . 1 / 6 − 1 / 1 1 = 5 / 6 6 b u t b y ( ∗ ∗ ) i t i s n o t v a l i d . L e t c = 1 2 . 1 / 6 − 1 / 1 2 = 1 / 1 2 b u t c = d , n o t v a l i d , b y ( ∗ ) . F o r c > 1 2 , 1 / c + 1 / d < 1 / 6 , s o n o m o r e s o l u t i o n s w i t h a = 2 . b = 3 . ( B ) a = 2 , b = 4 : − 1 − ( 1 / 2 + 1 / 4 ) = 1 / 4 . S o 1 / c + 1 / d = 1 / 4 . L e t c = 5 . 1 / 4 − 1 / 5 = 1 / 2 0 . S o ( 2 , 4 , 5 , 2 0 ) i s t h e s o l u t i o n . . . . . . 5 L e t c = 6 . 1 / 4 − 1 / 6 = 1 / 1 2 . S o ( 2 , 4 , 6 , 1 2 ) i s t h e s o l u t i o n . . . . . . 6 L e t c = 7 . 1 / 4 − 1 / 7 = 3 / 2 8 b u t b y ( ∗ ) i t i s n o t v a l i d . L e t c = 8 . 1 / 4 − 1 / 8 = 1 / 8 b u t c = d , n o t v a l i d , b y ( ∗ ) F o r c > 8 , 1 / c + 1 / d < 1 / 4 , s o n o m o r e s o l u t i o n s w i t h a = 2 . b = 4 . ( C ) a = 2 , b = 5 : − 1 − ( 1 / 2 + 1 / 5 ) = 3 / 1 0 . S o 1 / c + 1 / d = 3 / 1 0 . L e t c = 6 . 3 / 1 0 − 1 / 6 = 2 / 1 5 b u t b y ( ∗ ) i t i s n o t v a l i d . F o r c > 6 , 1 / c + 1 / d < 3 / 1 0 , s o n o m o r e s o l u t i o n s w i t h a = 2 . b = 5 . ⟹ ( C ) h a s n o s o l u t i o n . ( D ) a = 2 , b = 6 : − a = 2 , b = c = d , ⟹ 1 / 2 + 1 / 6 + 1 / 6 + 1 / 6 = 1 . B u t o u r c , a n d d a r e g o i n g t o b e G R E A T E R t h a n 6 a n d s o f o r b ≥ 6 n o s o l u t i o n . S o t h e r e a r e 6 c o m b i n a t i o n s . B u t p e r m u t a t i o n s w o u l d b e = 6 ∗ 4 ! = 1 4 4 .
Problem Loading...
Note Loading...
Set Loading...
Assume without loss of generality that a < b < c < d
Then n = 3 as then the maximum of a 1 + b 1 + c 1 + d 1 is
3 1 + 4 1 + 5 1 + 6 1 = 6 0 5 7 < 1
Therefore, a = 2 .
b 1 + c 1 + d 1 = 2 1
If b = 3 , then c 1 + d 1 = 6 1
c d c + d = 6 1
6 c + 6 d = c d
c d − 6 c − 6 d = 0
( c − 6 ) ( d − 6 ) = 3 6
There are four ways to factorise 36 into two factors- 1 and 36, 2 and 18, 3 and 12, and 4 and 9, so there are 4 solutions here.
If b = 4 , then similarly, we get ( c − 4 ) ( d − 4 ) = 1 6
There are two ways to factorise 16- 1 and 16, and 2 and 8, so there are two solutions here.
If b = 5 , then the maximum of b 1 + c 1 + d 1 is
5 1 + 6 1 + 7 1 = 2 1 0 1 0 7 = 2 1 + 1 0 5 1
However, we cannot make this smaller by 1 0 5 1 for this to get to 2 1 , so there are no solutions here.
Therefore, there are 6 solutions when a < b < c < d .
However, we need to take into account the total number of permutations, so there are 6 × 4 ! = 1 4 4 solutions.