Sum of fractions till 2019

Algebra Level 3

1 3 + 1 3 + 6 + 1 3 + 6 + 9 + + 1 3 + 6 + 9 + + 2019 = a b \frac{1}{3}+\frac{1}{3+6}+\frac{1}{3+6+9}+\ldots+\frac{1}{3+6+9+\ldots+2019} = \frac{a}{b}

It is known that a a and b b are positive integers and gcd ( a , b ) = 1 \gcd(a,b)=1 , find the value of a + b a+b .


The answer is 1684.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chan Lye Lee
Mar 2, 2019

Note that 1 3 + 6 + + 3 r = 1 3 × 1 1 + 2 + + r = 1 3 × 2 r ( r + 1 ) = 2 3 ( 1 r 1 r + 1 ) \frac{1}{3+6+\ldots+3r} = \frac{1}{3}\times\frac{1}{1+2+\ldots+r} = \frac{1}{3} \times \frac{2}{r(r+1)} = \frac{2}{3}\left(\frac{1}{r}-\frac{1}{r+1}\right) and 2019 = 3 × 673 2019 = 3\times 673 .

It means that the desired (telescoping) sum is 2 3 ( 1 1 1 674 ) = 673 1011 = a b \frac{2}{3} \left(\frac{1}{1} -\frac{1}{674} \right) = \frac{673}{1011} = \frac{a}{b} . Hence a + b = 1684 a+b=1684 .

Similar solution with @Chan Lye Lee 's

S = 1 3 + 1 3 + 6 + 1 3 + 6 + 9 + + 1 3 + 6 + 9 + + 2019 = 1 3 ( 1 1 + 1 1 + 2 + 1 1 + 2 + 3 + + 1 1 + 2 + 3 + + 673 ) = 1 3 n = 1 673 1 k = 1 n k Sum of a GP = 1 3 n = 1 673 2 n ( n + 1 ) = 2 3 n = 1 673 ( 1 n 1 n + 1 ) = 2 3 ( 1 1 1 674 ) = 673 1011 \begin{aligned} S & = \frac 13 + \frac 1{3+6} + \frac 1{3+6+9} + \cdots + \frac 1{3+6+9+\cdots + 2019} \\ & = \frac 13 \left(\frac 11 + \frac 1{1+2} + \frac 1{1+2+3} + \cdots + \frac 1{1+2+3+\cdots + 673}\right) \\ & = \frac 13 \sum_{n=1}^{673} \frac 1{\color{#3D99F6}\sum_{k=1}^n k} & \small \color{#3D99F6} \text{Sum of a GP} \\ & = \frac 13 \sum_{n=1}^{673} \frac 2{n(n+1)} \\ & = \frac 23 \sum_{n=1}^{673} \left(\frac 1n - \frac 1{n+1}\right) \\ & = \frac 23 \left(\frac 11 - \frac 1{674}\right) \\ & = \frac {673}{1011} \end{aligned}

Therefore a + b = 673 + 1011 = 1684 a+b = 673+1011 = \boxed{1684} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...