Sum of Fractions

Algebra Level 4

S = 1 1 × 2 × 3 + 1 2 × 3 × 4 + + 1 ( n ) ( n + 1 ) ( n + 2 ) S = \frac {1}{1\times 2 \times 3} + \frac {1}{2\times 3 \times 4} + \ldots + \frac {1} {(n)(n+1)(n+2)} + + 1 14 × ( 14 + 1 ) × ( 14 + 2 ) = a b , + \ldots +\frac {1}{14 \times (14+1) \times (14+2)} = \frac {a} {b}, where a a and b b are positive, coprime integers. What is the value of a + b a + b ?


The answer is 599.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

16 solutions

Shikhar Jaiswal
Mar 20, 2014

a n = 1 n ( n + 1 ) ( n + 2 ) = ( n + 1 ) 2 n ( n + 2 ) n ( n + 1 ) ( n + 2 ) = n + 1 n ( n + 2 ) 1 n + 1 a_{n}=\frac {1}{n(n+1)(n+2)}=\frac {(n+1)^2-n(n+2)}{n(n+1)(n+2)}=\frac {n+1}{n(n+2)}-\frac {1}{n+1}

a n = 1 n + 2 + 1 n ( n + 2 ) 1 n + 1 = 1 n + 2 1 n + 1 + 1 2 ( 1 n 1 n + 2 ) \Rightarrow a_{n}=\frac {1}{n+2}+\frac {1}{n(n+2)}-\frac {1}{n+1}=\frac {1}{n+2}-\frac {1}{n+1}+\frac {1}{2}(\frac {1}{n}-\frac {1}{n+2})

S = n = 1 14 a n = n = 1 14 ( 1 n + 2 1 n + 1 ) + 1 2 n = 1 14 ( 1 n 1 n + 2 ) S=\displaystyle \sum_{n=1}^{14} a_{n}= \displaystyle \sum_{n=1}^{14}(\frac {1}{n+2}-\frac {1}{n+1})+\frac {1}{2}\displaystyle \sum_{n=1}^{14}(\frac {1}{n}-\frac {1}{n+2})

S = ( 1 16 1 2 ) + 1 2 ( 1 + 1 2 1 15 1 16 ) \Rightarrow S=(\frac {1}{16}-\frac {1}{2})+\frac {1}{2}(1+\frac {1}{2}-\frac {1}{15}-\frac {1}{16})

S = 119 480 a = 119 ; b = 480 a + b = 599 \Rightarrow S=\frac {119}{480} \Rightarrow a=119;b=480 \Rightarrow \boxed{a+b=599}

Good one, some steps need more clarification though, it's understandable but I would prefer if you work on that.

Jon Snow - 7 years, 2 months ago

Log in to reply

Thanks for your advice...i did miss out a bit on a few steps but i would take care in the future.......

Shikhar Jaiswal - 7 years, 2 months ago

(1/2 1 2)-(1/2 2 3)+(1/2 2 3)-...+(1/2 14 15)-(1/2 15 16)=(1/2 2)-(1/2 15*16) = (119/480) = a/b So a+b=599.

vinod trivedi - 7 years, 2 months ago

how you have done this step: S=(1/16-0.5)+0.5(1+0.5-1/15-1/16)

Prasad Shinde - 7 years, 2 months ago

Log in to reply

I had simplified the expression into a telescoping series.......if you start putting the values of 'n'(from 1 to 14) you will see that the values cancel out and only the first and last terms remain(in the first expression)......follow a similar procedure in the second expression to get the required result

Shikhar Jaiswal - 7 years, 2 months ago
Neelam Narwhal
May 20, 2014

We will prove a formula over all i = 1 k 1 i ( i + 1 ) ( i + 2 ) \displaystyle{\sum_{i=1}^k{\frac{1}{i(i+1)(i+2)}}} , generalizing the problem.

We hope that the sum of the sequence telescopes, or that the terms will conveniently collapse so that we can find the sum easily. To do this, we first try to write the value 1 i ( i + 1 ) ( i + 2 ) \frac{1}{i(i+1)(i+2)} as a i + b i + 1 + c i + 2 \frac{a}{i}+\frac{b}{i+1}+\frac{c}{i+2} , a partial fraction decomposition. The motivation for doing this lies in the fact that expressing each term as a sum of fractions may lead to our supposed telescoping.

So 1 i ( i + 1 ) ( i + 2 ) = a i + b i + 1 + c i + 2 \frac{1}{i(i+1)(i+2)}=\frac{a}{i}+\frac{b}{i+1}+\frac{c}{i+2} over all i i . We can plug in any values for i i to solve for a , b a,b and c c . Plugging in i = 0 i=0 , we get that a = 1 / 2 a=1/2 . Plugging in i = 1 i=-1 , we get that b = 1 b=-1 . Finally, plugging in i = 2 i=-2 , we get c = 1 / 2 c=1/2 .

So, each value of 1 i ( i + 1 ) ( i + 2 ) \frac{1}{i(i+1)(i+2)} can be written as 1 2 1 k 1 k + 1 + 1 2 1 k + 2 \frac{1}{2} \cdot \frac{1}{k}-\frac{1}{k+1}+\frac{1}{2} \cdot \frac{1}{k+2} . We now express the sum with this decomposition: i = 1 k 1 i ( i + 1 ) ( i + 2 ) \displaystyle{\sum_{i=1}^k{\frac{1}{i(i+1)(i+2)}}} = ( 1 2 1 1 1 2 + 1 2 1 3 ) + ( 1 2 1 2 1 3 + 1 2 1 4 ) + ( 1 2 1 3 1 4 + 1 2 1 5 ) + =(\frac{1}{2} \cdot \frac{1}{1}-\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{3})+(\frac{1}{2} \cdot \frac{1}{2}-\frac{1}{3}+\frac{1}{2} \cdot \frac{1}{4})+(\frac{1}{2} \cdot \frac{1}{3} -\frac{1}{4}+\frac{1}{2} \cdot \frac{1}{5})+ ( 1 2 1 4 1 5 + 1 2 1 6 ) (\frac{1}{2} \cdot \frac{1}{4}-\frac{1}{5}+\frac{1}{2} \cdot \frac{1}{6}) \cdots and so on.

Notice that we can pair two 1 2 1 3 \frac{1}{2} \cdot \frac{1}{3} to make a total 1 3 \frac{1}{3} , which cancels with the 1 3 -\frac{1}{3} , and so on for 3 , 4 , 5 3, 4, 5 \cdots .

So our final value is simply 1 2 1 1 1 2 1 2 1 2 1 i + 1 + 1 2 1 i + 2 \frac{1}{2} \cdot \frac{1}{1}-\frac{1}{2} \cdot \frac{1}{2}-\frac{1}{2} \cdot \frac{1}{i+1}+\frac{1}{2} \cdot \frac{1}{i+2} . Simplifying leads to 1 4 1 2 ( i + 1 ) + 1 2 ( i + 2 ) \frac{1}{4}-\frac{1}{2(i+1)}+\frac{1}{2(i+2)} , or more simply just n ( n + 3 ) 4 ( n + 2 ) ( n + 1 ) \frac{n(n+3)}{4(n+2)(n+1)} .

We have our general formula. Plugging in i = 14 i=14 leads to 119 480 \frac{119}{480} , so the desired answer is 599 599 .

Pace Maker
May 20, 2014

Let u i = 1 i ( i + 1 ) , a n = 1 n ( n + 1 ) ( n + 2 ) u_i=\dfrac{1}{i(i+1)},a_n=\dfrac{1}{n(n+1)(n+2)} Then, u i u i + 1 = 2 a i u_i-u_{i+1}=2a_i So, telescoping, the sum is just \dfrac12\left(u_1-u_{14}\right)=\dfrac12\left(\dfrac{1}{2}-\dfrac{1}{15*16}\right=\dfrac{119}{480}) Since we already have gcd ( 480 , 119 ) = 1 \gcd(480,119)=1 , the sum is 119 + 480 = 599 119+480=\boxed{599}

use coding correctly

anshu garg - 4 years, 6 months ago
Pratik Sachdeva Staff
May 20, 2014

We write

1 ( n ) ( n + 1 ) ( n + 2 ) = A n + B n + 1 + C n + 2 \frac{1}{(n)(n+1)(n+2)} = \frac{A}{n} + \frac{B}{n+1} + \frac{C}{n+2}

Where A , B , C R A,B,C\in \ \mathbb{R} . Combining the fractions on the RHS gives

1 ( n ) ( n + 1 ) ( n + 2 ) = A ( n + 1 ) ( n + 2 ) + B ( n ) ( n + 2 ) + C ( n ) ( n + 1 ) ( n ) ( n + 1 ) ( n + 2 ) \frac{1}{(n)(n+1)(n+2)} = \frac{A(n+1)(n+2) +B(n)(n+2) +C(n)(n+1)}{(n)(n+1)(n+2)}

A ( n 2 + 3 n + 2 ) + B ( n 2 + 2 n ) + C ( n 2 + n ) = 1 \Rightarrow A(n^2+3n+2) + B(n^2+2n) + C(n^2+n) = 1

The RHS of the last equation only has a constant. We thus obtain the following systems of equations

A n 2 + B n 2 + C n 2 = 0 A + B + C = 0 An^2 + Bn^2 +Cn^2 = 0 \Rightarrow A+B+C = 0

3 A n + 2 B n + C n = 0 3 A + 2 B + C = 0 3An + 2Bn + Cn = 0 \Rightarrow 3A+2B+C=0

2 A = 1 A = 1 2 2A = 1 \Rightarrow A=\frac{1}{2}

Solve for B B and C C gives ( A , B , C ) = ( 1 2 , 1 , 1 2 ) (A,B,C) = (\frac{1}{2}, -1, \frac{1}{2} ) . The summation can then be written as

i = 1 14 ( 1 2 i 1 i + 1 + 1 2 i + 2 ) \displaystyle \sum^{14}_{i=1} \left(\frac{\frac{1}{2}}{i} - \frac{1}{i+1} + \frac{\frac{1}{2}}{i+2}\right)

= 1 2 1 1 2 + 1 2 3 \displaystyle = \frac{\frac{1}{2}}{1} - \frac{1}{2} +\frac{\frac{1}{2}}{3}

+ 1 2 2 1 3 + 1 2 4 \displaystyle+\frac{\frac{1}{2}}{2} - \frac{1}{3} +\frac{\frac{1}{2}}{4}

+ 1 2 3 1 4 + 1 2 5 \displaystyle+ \frac{\frac{1}{2}}{3} - \frac{1}{4} + \frac{\frac{1}{2}}{5}

+ + + \displaystyle + \ \ \vdots + \ \ \ \vdots + \ \vdots

+ 1 2 13 1 14 + 1 2 15 \displaystyle + \frac{\frac{1}{2}}{13} - \frac{1}{14} + \frac{\frac{1}{2}}{15}

+ 1 2 14 1 15 + 1 2 16 . \displaystyle +\frac{\frac{1}{2}}{14} - \frac{1}{15} + \frac{\frac{1}{2}}{16}.

This summation telescopes, leaving S = 1 2 1 1 2 + 1 2 2 + 1 2 15 1 15 + 1 2 16 = 119 480 S=\frac{\frac{1}{2}}{1} - \frac{1}{2} + \frac{\frac{1}{2}}{2} + \frac{\frac{1}{2}}{15} -\frac{1}{15} + \frac{\frac{1}{2}}{16} = \frac{119}{480} . Our answer is 119 + 480 = 599 119+480 = 599 .

Run Xian Tan
May 20, 2014

Solution for Math Question Observe that 1/(n×(n+1)×(n+2))=1/n (1/(n+1)-1/(n+2))=1/(n+2) (1/n-1/(n+1)) As such, we have S=1/1 (1/2-1/3)+1/2 (1/3-1/4)+⋯+1/14 (1/15-1/16) =(1/1×1/2)-(1/1×1/3)+(1/2×1/3)-(1/2×1/4)+⋯+(1/14×1/15)-(1/14×1/16) =(1/1×1/2)+1/3 (1/2-1/1)+1/4 (1/3-1/2)+⋯+1/15 (1/14-1/13)-(1/14×1/16) =(1/1×1/2)-1/3 (1/1-1/2)-1/4 (1/2-1/3)-…-1/15 (1/13-1/14)-(1/14×1/16) =(1/1×1/2)-1/(1×2×3)-1/(2×3×4)-…-1/(13×14×15)-(1/14×1/16) =1/2-1/(1×2×3)-1/(2×3×4)-…-1/(13×14×15)-1/(14×15×16)+1/(14×15×16)-1/(14×16) =1/2-S+1/(14×15×16)-1/(14×16) Hence, 2S=1/2+1/(14×15×16)-1/(14×16) =1/2+(1-15)/(14×15×16) =1/2-1/(15×16) =1/2-1/15+1/16 =119/240 Resulting in, S=119/480

Vedant Somani
May 20, 2014

we can observe that nth term is 1/n(n+1)(n+2). Let V(n) be 1/n(n+1). Then if we do v(n) - v(n+1), we get 2/n(n+1)(n+2). which is equal to 2.T(n) therefore t(n) = [v(n) - v(n+1)]/2. when we do t(1) + t(2) + ........... + t(14) we get [v(1) - v(15)]/2 v(1) = 1/2 and v(15) = 1/240. and then on further simplification we get the answer as 119/480. therefore a=119 and b=480 and a + b = 119+480 = 599

Wittmann Goh
May 20, 2014

Trying to calculate this sum using brute force is far too tedious, thus we must find a way to simplify this problem.

Making use of the fact that 1 k 1 k + 2 = 1 2 1 k ( k + 2 ) \frac{1}{k}-\frac{1}{k+2}=\frac{1}{2} \frac{1}{k(k+2)} , we can rewrite this sum as:

1 2 1 n + 1 ( 1 n 1 n + 2 ) + 1 2 ( 1 n + 2 1 n + 1 1 n + 3 ) + + 1 2 1 n + 14 ( 1 n + 13 1 n + 15 ) \frac{1}{2}\frac{1}{n+1}(\frac{1}{n}-\frac{1}{n+2})+\frac{1}{2}(\frac{1}{n+2}\frac{1}{n+1}-\frac{1}{n+3})+ \ldots +\frac{1}{2}\frac{1}{n+14}(\frac{1}{n+13}-\frac{1}{n+15}) = 1 2 n ( n + 1 ) 1 2 ( n + 1 ) ( n + 2 ) + 1 2 ( n + 1 ) ( n + 2 ) 1 2 ( n + 2 ) ( n + 3 ) + + 1 2 ( n + 13 ) ( n + 14 ) 1 2 ( n + 14 ) ( n + 5 ) = \frac{1}{2n(n+1)}-\frac{1}{2(n+1)(n+2)}+\frac{1}{2(n+1)(n+2)}-\frac{1}{2(n+2)(n+3)}+ \ldots +\frac{1}{2(n+13)(n+14)}-\frac{1}{2(n+14)(n+5)} = 1 2 n ( n + 1 ) 1 2 ( n + 14 ) ( 1 + 15 ) =\frac{1}{2n(n+1)}-\frac{1}{2(n+14)(1+15)}

Substituting n=1, we get S = 1 4 1 480 = 119 480 S=\frac{1}{4}-\frac{1}{480}=\frac{119}{480} Hence, a + b = 599 a+b=599

Marjorie Hoang
May 20, 2014

Firstly, we realise that S is the difference between the sequence

M = \frac{1}{1\times2} + \frac{1}{2\times3} + ... + \frac{1}{14\times15}

and

N = \frac{1}{1\times3} + \frac{1}{2\times4} + ... + \frac{1}{14\times16}

Then we calculate the value of M and N

M = \frac{1}{1\times2} + \frac{1}{2\times3} + ... + \frac{1}{14\times15} = (\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + ... + (\frac{1}{14} - \frac{1}{15}) = 1 - \frac{1}{15} =\frac{14}{15}

N = \frac{1}{1\times3} + \frac{1}{2\times4} + ... + \frac{1}{14\times16} = \frac{1}{2} ( (\frac{1}{1} - \frac{1}{3}) + (\frac{1}{2} - \frac{1}{4}) + ... + (\frac{1}{14} - \frac{1}{16}) ) =\frac{1}{2} ( 1 +\frac{1}{2} - \frac{1}{15} -\frac{1}{16}) = \frac{329}{480}

M - N = \frac{14}{15} - \frac{329}{480} = \frac{119}{480}

Hence, a = 119, b = 480 and a + b = 599 (solved!)

Erick Sumargo
May 20, 2014

1/(n) (n+1) (n+2) = 1/2 * (1/n-1/n+1-1/n+1+1/n+2)

So that, = 1/2 * (1/1-1/2-1/2+1/3)+1/2(1/2-1/3-1/3+1/4)+.....+1/2(1/14-1/15-1/15+1/16)

= 1/2 (1/2-1/15 16) = 1/2 ((120-1)/240) =1/2 (119/240) =119/480

Since a = 119 and b = 480, a + b = 599

Eng Ngee H'ng
May 20, 2014

1/(n)(n+1)(n+2) = (1/2)(2/(n)(n+1)(n+2)) = (1/2)((n+2-n)/(n)(n+1)(n+2)) This equals (1/2)(1/(n)(n+1) - 1/(n+1)(n+2) ).

So 1/(1)(2)(3) = (1/2)(1/(1)(2)-1/(2)(3)) 1/(2)(3)(4) = (1/2)(1/(2)(3)-1/(3)(4)) ...... 1/(14)(15)(16) = (1/2)(1/(14)(15)-1/(15)(16))

This sum is = (1/2)(1/(1)(2)-1/(2)(3) +1/(2)(3)-1/(3)(4)+...+1/(14)(15)-1/(15)(16))

Cancelling out similar terms, like -1/(2)(3) +1/(2)(3) = 0, we get (1/2)(1/(1)(2)-1/(15)(16)) = (1/2)(1/2-1/240) = 119/480

119 = 7 17, 480 = 2^5 *3 5 in prime factorisation. 119 and 480 are positive, coprime integers. 119 + 480 = 599 (Ans.)

Sarang Shrivastav
May 20, 2014

Tn=0.5*(1/n(n+1)-1/(n+1)(n+2)) Now put value for n in this. And start adding u will see that last part of first one get cancelled by first term of succeding one and finally this will reduce onluy to two part.

Qi Huan Tan
May 20, 2014

Note that 1/[(i)(i+1)(i+2]=1/(2i)-1/(i+1)+1/[2(i+2)]. 2/[(i)(i+1)(i+2)]=[1/i-1/(i+1)]-[1/(i+1)-1/(i+2)]. 2S=[(1/1-1/2)-(1/2-1/3)]+[(1/2-1/3)-(1/3-1/4)]+...+[(1/14-1/15)-(1/15-1/16)]=(1/1-1/2+1/2-1/3+...+1/14-1/15)-(1/2-1/3+1/3-1/4+...+1/15-1/16)=(1/1-1/15)-(1/2-1/16)=14/15-7/16=199/240. Therefore, S=199/480. a+b=199+480=599.

Cassio Sousa
May 20, 2014

This sum is complicated to do directly, but we may rearrange some terms of each fraction separately. As there are three terms in each denominator, the telescoping series may be constructed by using partial sums that have only two terms in their denominator. Therefore, we are looking for a expression like this:

1 ( n ) ( n + 1 ) ( n + 2 ) = A ( 1 ( n ) ( n + 1 ) 1 ( n + 1 ) ( n + 2 ) ) , \frac {1}{(n)(n+1)(n+2)} = A \left( \frac {1}{(n)(n+1)} - \frac {1}{(n+1)(n+2)} \right),

where A is a constant number. Solving for every possible n , we may find that:

A = 1 2 . A = \frac {1}{2} .

Returning to the first sum S , using the property above:

S = 1 2 ( 1 1 × 2 1 2 × 3 + 1 2 × 3 1 3 × 4 + . . . + 1 14 × 15 1 15 × 16 ) . S = \frac{1}{2} \left( \frac{1}{1 \times 2} - \frac{1}{2 \times 3} + \frac{1}{2 \times 3} - \frac{1}{3 \times 4} + ... + \frac{1}{14 \times 15} - \frac{1}{15 \times 16} \right).

Regrouping the terms:

S = 1 2 ( 1 1 × 2 1 15 × 16 ) = 119 480 = a b . S= \frac{1}{2} \left( \frac{1}{1 \times 2} - \frac{1}{15 \times 16} \right) = \frac{119}{480} = \frac{a}{b}.

As: 119 = 7 × 17 119 = 7 \times 17 and 480 = 32 × 3 × 5 480 = 32 \times 3 \times 5 , we have that 119 and 480 are coprime integers. Therefore, a = 119 , b = 480 a = 119, b = 480 and: a + b = 599 a+b = 599 , the solution of this problem.

Awesome solution. Same as my solution

Charuka Bandara - 5 years, 3 months ago
Kliment Serafimov
May 20, 2014

S = 1 1 × 2 × 3 + + 1 ( n ) ( n + 1 ) ( n + 2 ) + + 1 14 × ( 14 + 1 ) × ( 14 + 2 ) = S = \frac {1}{1\times 2 \times 3} + \ldots + \frac {1} {(n)(n+1)(n+2)} + \ldots +\frac {1}{14 \times (14+1) \times (14+2)} = = n = 3 16 ( n 3 ) ! n ! = = \displaystyle \sum_{n=3}^{16} \frac {(n-3)!}{n!} = 1 6 2 16 2 4 × 16 ( 16 1 ) = 119 480 = a b \frac {16^2 - 16 -2}{4 \times 16(16-1)} = \frac {119}{480} = \frac {a} {b}

a + b = 599 a+b = 599

Smriti Bhaskar
May 20, 2014

this is of the form summation(1/n+1/(n+1)+1/(n+2)). so, by partial fraction method and expanding it comes finally to this form- 1/2summation(1/n - 1/n+1) -1/2summation(1/n+1 - 1/n+2). which is solved by taking n=1,2,3....14... we find that only the 1st and last terms in each bracket remains.

taking the given equation into the form telescopic series we get the answer as 199/480.therefore (a+b)=599

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...