Sum of function

Algebra Level 3

If f ( x ) = 2 2 + 4 x f(x)=\frac{2}{2+4^x} Find, A = f ( 1 101 ) + f ( 2 101 ) + f ( 3 101 ) + . . . + f ( 100 101 ) A=f\left(\frac{1}{101}\right)+f\left(\frac{2}{101}\right)+f\left(\frac{3}{101}\right)+...+f\left(\frac{100}{101}\right) .


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

f ( x ) = 2 2 + 4 x = 1 1 + 2 2 x 1 = 1 1 + 2 x + ( x 1 ) It is interesting to note that, f ( 1 x ) = 1 1 + 2 ( 1 x ) x = 1 1 + 2 1 2 x = 2 2 x 1 1 + 2 2 x 1 = 1 1 1 + 2 2 x 1 = 1 f ( x ) f ( x ) + f ( 1 x ) = 1 ( 1 ) A = n = 1 100 f ( n 101 ) = n = 1 100 f ( 101 n 101 ) 2 A = n = 1 100 f ( n 101 ) + f ( 101 n 101 ) = n = 1 100 1 From ( 1 ) A = 50 \begin{aligned}\\ f(x)&=\dfrac{2}{2+4^x}\\ &=\dfrac{1}{1+2^{2x-1}}\\ &=\dfrac{1}{1+2^{x+(x-1)}}\\ \text{It is interesting to note that,}\\ f(1-x)&=\dfrac{1}{1+2^{(1-x)-x}}\\ &=\dfrac{1}{1+2^{1-2x}}\\ &=\dfrac{2^{2x-1}}{1+2^{2x-1}}\\ &=1-\dfrac{1}{1+2^{2x-1}}\\ &=1-f(x)\\\\ \implies f(x)&+f(1-x)=1 \hspace{4mm}\color{#3D99F6}\small(1) \\ \text{A}&=\sum_{n=1}^{100} f\left(\dfrac{n}{101}\right)\\ &=\sum_{n=1}^{100} f\left(\dfrac{101-n}{101}\right)\\ \implies 2\text{A}&=\sum_{n=1}^{100} f\left(\dfrac{n}{101}\right)+f\left(\dfrac{101-n}{101}\right)\\ &=\sum_{n=1}^{100} \hspace{2mm}1 \hspace{8mm}\color{#3D99F6}\small\text{From }(1)\\ \implies\text{A}&=\color{#EC7300}\boxed{\color{#333333}50}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...