Sum of Gaps 3

Calculus Level 5

It is known that ln 2 = k = 1 ( 1 ) k + 1 k . \displaystyle \ln{2} = \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k+1}}{k}. If we let

S = n = 1 ( k = 1 n ( 1 ) k + 1 k ln 2 ) , S=\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} \frac{\left(-1\right)^{k+1}}{k} -\ln{2} \right),

what is the value of 10000 S , \displaystyle\left\lfloor 10000S \right\rfloor, where \lfloor \cdot \rfloor denotes the floor function ?


Inspiration


The answer is 1931.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Oct 31, 2018

We have k = 1 n ( 1 ) k + 1 x k 1 = 1 ( x ) n 1 + x 0 < x < 1 \sum_{k=1}^n (-1)^{k+1}x^{k-1} \; = \; \frac{1 - (-x)^n}{1+x} \hspace{2cm} 0 < x < 1 and hence k = 1 n ( 1 ) k + 1 k = 0 1 1 ( x ) n 1 + x d x = ln 2 0 1 ( x ) n 1 + x d x \sum_{k=1}^n \frac{(-1)^{k+1}}{k} \; = \; \int_0^1 \frac{1 - (-x)^n}{1+x}\,dx \; = \; \ln2 - \int_0^1 \frac{(-x)^n}{1+x}\,dx so that S N = n = 1 N ( k = 1 n ( 1 ) k + 1 k ln 2 ) = n = 1 N 0 1 ( x ) n 1 + x d x = 0 1 x ( 1 ( x ) N ) ( 1 + x ) 2 d x S_N \; = \; \sum_{n=1}^N \left(\sum_{k=1}^n \frac{(-1)^{k+1}}{k} - \ln2\right) \; = \; -\sum_{n=1}^N \int_0^1 \frac{(-x)^n}{1+x}\,dx \; = \; \int_0^1 \frac{x(1 - (-x)^N)}{(1+x)^2}\,dx for all integers N 1 N \ge 1 . Thus the infinite sum is S = lim N 0 1 x ( 1 ( x ) N ) ( 1 + x ) 2 d x = 0 1 x ( 1 + x ) 2 d x = ln 2 1 2 S \; = \; \lim_{N \to \infty} \int_0^1 \frac{x(1 - (-x)^N)}{(1+x)^2}\,dx \; = \; \int_0^1 \frac{x}{(1+x)^2}\,dx \; = \; \ln2 - \tfrac12 making the answer 10000 ( ln 2 1 2 ) = 1931 \lfloor 10000(\ln2 - \tfrac12)\rfloor = \boxed{1931} .

@Mark Hennings Thanks fr your solution. It is elegant!

Chan Lye Lee - 2 years, 7 months ago

Wow!!! Thank you Great, @Mark Hennings Sir. This is a learning for me. :)

Naren Bhandari - 2 years, 7 months ago

i did exactly the same thing. i am sorry why there are so many questions on integrations and infinite series in brilliant.org

Srikanth Tupurani - 2 years, 2 months ago
Julian Poon
Nov 4, 2018

Amazing problem! I'll be proving a more general case, but I won't be bothering with rigor (e.g. issue of convergence etc):


Lemma: Let A = n = 0 a n \displaystyle A = \sum_{n=0}^{\infty} a_n and f ( x ) = n = 0 a n x n \displaystyle f(x) = \sum_{n=0}^{\infty} a_n x^n . Then

n = 0 ( A k = 0 n a k ) = lim x 1 A f ( x ) 1 x \displaystyle \sum_{n=0}^{\infty} \left( A - \sum_{k=0}^{n} a_k \right) = \lim _{ x \rightarrow 1 }{ \frac{A - f(x)}{1-x} }


Proof:

n = 0 x n k = 0 n a k = n = 0 k = 0 n x n a k = 0 k n x n a k Substitute n = k + j = 0 k k + j x n a k = k = 0 j = 0 x k + j a k = ( k = 0 x k a k ) ( j = 0 x j ) = f ( x ) 1 x \begin{aligned} \sum_{n=0}^{\infty}x^n\sum_{k=0}^n a_k &= \sum_{n=0}^{\infty}\sum_{k=0}^n x^n a_k \\ &= \sum_{0\le k\le n\le \infty} x^n a_k \quad \quad \text{Substitute } n=k+j \\ &= \sum_{0\le k\le k+j\le \infty} x^n a_k \\ &= \sum_{k=0}^{\infty}\sum_{j=0}^{\infty} x^{k+j} a_k \\ &= \left(\sum_{k=0}^{\infty}x^k a_k \right) \left(\sum_{j=0}^{\infty} x^j\right) \\ &= \frac{f(x)}{1-x} \end{aligned}

n = 0 x n ( A k = 0 n a k ) = A 1 x f ( x ) 1 x = A f ( x ) 1 x \begin{aligned} \sum_{n=0}^{\infty} x^n \left( A - \sum_{k=0}^{n} a_k \right) &= \frac{A}{1-x} - \frac{f(x)}{1-x} \\ &= \frac{A - f(x)}{1-x} \end{aligned} As such, without proving that the limit exists:

n = 0 ( A k = 0 n a k ) = lim x 1 A f ( x ) 1 x \displaystyle \sum_{n=0}^{\infty} \left( A - \sum_{k=0}^{n} a_k \right) = \lim _{ x \rightarrow 1 }{ \frac{A - f(x)}{1-x} }


The question above is simply a special case of this lemma.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...