Sum of Gaps

Calculus Level 2

Given that e = k = 0 1 k ! 2.718 , \displaystyle e = \sum_{k=0}^\infty \dfrac1{k!} \approx 2.718, what is the value of n = 0 ( e k = 0 n 1 k ! ) ? \displaystyle \sum_{n=0}^{\infty}\left(e- \sum_{k=0}^{n} \frac{1}{k!}\right) ?


The answer is 2.71828.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

X X
May 6, 2018

n = 0 ( e k = 0 n 1 k ! ) = ( e 1 ) + ( e 1 1 ) + ( e 1 1 1 2 ) + ( e 1 1 1 2 1 6 ) + . . . \displaystyle\sum_{n=0}^{\infty}\left(e- \sum_{k=0}^{n} \frac{1}{k!}\right)=(e-1)+(e-1-1)+(e-1-1-\frac12)+(e-1-1-\frac12-\frac16)+...

= ( 1 + 1 2 + 1 6 + 1 24 + 1 120 + . . . ) + ( 1 2 + 1 6 + 1 24 + 1 120 + . . . ) + ( 1 6 + 1 24 + 1 120 + . . . ) + . . . \displaystyle=(1+\frac12+\frac16+\frac1{24}+\frac1{120}+...)+(\frac12+\frac16+\frac1{24}+\frac1{120}+...)+(\frac16+\frac1{24}+\frac1{120}+...)+...

= 1 + 1 2 × 2 + 1 6 × 3 + 1 24 × 4 + 1 120 × 5 + . . . \displaystyle=1+\frac12\times2+\frac16\times3+\frac1{24}\times4+\frac1{120}\times5+...

= 1 + 1 + 1 2 + 1 6 + 1 24 + . . . = e \displaystyle=1+1+\frac12+\frac16+\frac1{24}+...=e

Andre Bourque
Aug 6, 2018

Solution using generating functions (not completely rigorous):

We wish to obtain a function which generates e P ( k ) e - P(k) , where P ( k ) P(k) is the k k th partial sum for e e . We can generate P ( k ) P(k) by the function e x 1 x \frac{e^x}{1-x} , since 1 1 x \frac{1}{1-x} generates partial sums. Now our function is simply e e x 1 x \frac{e - e^x}{1 - x} , and L'Hopital's rule at x = 1 x = 1 gives e e .

How come this works? Is there a more rigorous proof for this?

low Jonas - 1 year, 9 months ago
K T
Jan 17, 2020

n = 0 k = n + 1 1 k ! = 1 1 ! + 2 2 ! + 3 3 ! + . . . = 1 + 1 1 ! + 2 2 ! + . . . = k = 0 1 k ! = e \sum_{n=0}^\infty \sum_{k=n+1}^\infty \frac{1}{k!} = \frac{1}{1!} + \frac{2}{2!} + \frac{3}{3!} +... = 1 + \frac{1}{1!} + \frac{2}{2!} +... = \sum_{k=0}^\infty \frac{1}{k!}= e

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...