Sum of Integers

1 0 n n 3 + n 2 + n + 1 \large{\frac{10^n}{n^3 + n^2 + n + 1}}

Find the sum of all positive integers n \large{n} such that the above expression is also an integer.


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kazem Sepehrinia
Jul 16, 2015

n 3 + n 2 + n + 1 = ( n + 1 ) ( n 2 + 1 ) n^3+n^2+n+1=(n+1)(n^2+1) Note that if n n be an even number, then n + 1 n+1 and n 2 + 1 n^2+1 will be two odd co-prime numbers, but 1 0 n 10^n contains only one odd prime and ( n + 1 ) ( n 2 + 1 ) 1 0 n (n+1)(n^2+1) \nmid 10^n . So n n must be an odd number. n = 1 n=1 is not an answer, suppose n > 1 n>1 .

With n n odd, n 2 + 1 n^2+1 has an odd divisor since if n = 2 k + 1 n=2k+1 then n 2 + 1 = 2 ( 2 k 2 + 2 k + 1 ) n^2+1=2(2k^2+2k+1) and gcd ( n + 1 , n 2 + 1 ) = 2 \gcd(n+1, n^2+1)=2 , It follows that n + 1 = 2 a n+1=2^a and n 2 + 1 = 2 × 5 b n^2+1=2 \times 5^b . Combine to get 2 a ( 2 a 1 1 ) = 5 b 1 2^a(2^{a-1}-1)=5^b-1 \ \ \ \star So 2 a 5 b 1 2^a |5^b-1 and power of 2 2 in 5 b 1 5^b-1 is a a , so using LTE lemma we get 2 + v 2 ( b ) = v 2 ( 5 b 1 ) = a v 2 ( b ) = a 2 2+v_2(b)=v_2(5^b-1)=a \\ v_2(b)=a-2 Let b = 2 a 2 ( 2 c + 1 ) ; c 0 b=2^{a-2}(2c+1); c\ge0 , equation \star turns into 2 a ( 2 a 1 1 ) = 5 2 a 2 ( 2 c + 1 ) 1 2^a(2^{a-1}-1)=5^{2^{a-2}(2c+1)}-1 But for a 4 a\ge 4 5 2 a 2 ( 2 c + 1 ) 1 = ( 5 2 a 3 ( 2 c + 1 ) 1 ) ( 5 2 a 3 ( 2 c + 1 ) + 1 ) > 8 × 2 a 3 ( 2 c + 1 ) ( 1 + 8 × 2 a 3 ( 2 c + 1 ) + 1 ) = 2 a ( 2 c + 1 ) ( 2 a ( 2 c + 1 ) + 2 ) 2 a ( 2 a + 2 ) > 2 a ( 2 a 1 1 ) \displaystyle \begin{array}{c}\\ 5^{2^{a-2}(2c+1)}-1 &=(5^{2^{a-3}(2c+1)}-1)(5^{2^{a-3}(2c+1)}+1) \\ &> 8\times 2^{a-3}(2c+1)(1+8\times 2^{a-3}(2c+1)+1) \\ &=2^a(2c+1)( 2^a(2c+1)+2) \\ &\ge2^a( 2^a+2) \\ &>2^a( 2^{a-1}-1)\end{array} using the fact that 5 z > 1 + 8 z 5^z > 1+8z for z > 1 z>1 . So a < 4 a<4 and trying values gives a = 2 , 3 a=2, 3 and n = 2 a 1 = 3 , 7 n=2^a-1=3, 7 as answers. For n = 3 n=3 and n = 7 n=7 the expression ( n + 1 ) ( n 2 + 1 ) (n+1)(n^2+1) indeed divides 1 0 n 10^n .

If f(n) is to be an integer, ( n 3 + n 2 + n + 1 ) m u s t b e d i v i s i b l e b y 2 O r 5 o n l y . n 3 + n 2 + n = n ( n 2 + n + 1 ) m u s t e n d i n 9. S o n a n d ( n 2 + n + 1 ) m u s t b e o d d . F o r n = 1 , 5 , 9 n 3 + n 2 + n w i l l n o t e n d i n 9. n = 3 a n d 7 m a k e s f ( n ) a n i n t e g e r . (n^3+n^2+n+1) \ must\ be\ divisible\ by \ 2\ Or \ 5\ only.\\ n^3+n^2+n =n(n^2+n+1)\ must\ end\ in \ 9. \ \ So\ n\ and\ (n^2+n+1)\ must\ be\ odd.\\ For\ n=1,\ 5,\ 9\ \ n^3+n^2+n \ will\ not\ end\ in\ 9.\\ n=3\ and\ 7 \ makes \ f(n)\ an \ integer.
I will complete this shortly.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...