Sum of inverse tangents of roots

Geometry Level 4

If x 1 , x 2 , x 3 , x 4 x_1, x_2, x_3, x_4 are rotos to the equation x 4 ( sin 2 θ ) x 3 + ( cos 2 θ ) x 2 x cos θ sin θ = 0 x^4 - (\sin2\theta) x^3 + (\cos 2\theta) x^2- x \cos\theta - \sin\theta = 0 , compute i = 1 4 tan 1 x i \displaystyle \sum_{i=1}^4 \tan^{-1} x_i .

θ -\theta 9 0 o θ 90^{o} - \theta θ \theta 4 5 o θ 45^{o} - \theta

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We know i = 1 4 t a n 1 x i = t a n 1 S 1 S 3 1 S 2 + S 4 \sum_{i=1}^{4}tan^{-1}x_i = tan^{-1}\frac{S_1-S_3}{1-S_2+S_4}

Where S k S_k denotes the sum of the variables taken k at a time.

Here S 1 = s i n ( 2 θ ) , S 2 = c o s ( 2 θ ) , S 3 = c o s ( θ ) , S 4 = s i n ( θ ) S_1 = sin(2\theta), S_2 = cos(2\theta) , S_3 = cos(\theta) , S_4 = -sin(\theta) [As we know from vieta's]

So , i = 1 4 t a n 1 x i = t a n 1 s i n ( 2 θ ) c o s ( θ ) 1 c o s ( 2 θ ) s i n ( θ ) \sum_{i=1}^{4}tan^{-1}x_i = tan^{-1} \frac{sin(2\theta)-cos(\theta)}{1-cos(2\theta)-sin(\theta)}

= t a n 1 c o s ( θ ) ( 2 s i n ( θ ) 1 ) 2 s i n 2 ( θ ) s i n ( θ ) = tan^{-1} \frac{cos(\theta)(2sin(\theta)-1)}{2sin^2(\theta)-sin(\theta)}

= t a n 1 c o s ( θ ) ( 2 s i n ( θ ) 1 ) s i n ( θ ) ( 2 s i n ( θ ) 1 ) =tan^{-1} \frac{cos(\theta)(2sin(\theta)-1)}{sin(\theta)(2sin(\theta)-1)}

= t a n 1 c o s ( θ ) s i n ( θ ) =tan^{-1}\frac{cos(\theta)}{sin(\theta)}

= t a n 1 ( c o t ( θ ) =tan^{-1}(cot(\theta)

= t a n 1 ( t a n ( π 2 θ ) =tan^{-1}(tan(\frac{\pi}{2}-\theta)

= 90 θ =\boxed{90-\theta}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...