Sum of large numbers

Algebra Level 3

Find the sum of all digits of the decimal representation of 1 + 2 + 3 + + 1 0 100 1 + 2 + 3 + \cdots + 10^{100}

10 1000 4000 10000 20000 50000

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sum of ( 1 + 2 +3 + 4 + 5 + . . . . . . . . . . + 10^100 ) = ( 10^100 / 2 ) + ( 10^200 / 2 ) = 5 . 10^99 + 5 . 10^199 = b : So : Sum of All the digits of ( b ) equal ( 5 + 5 = 10 ) .

Chew-Seong Cheong
Feb 22, 2021

S = 1 + 2 + 3 + + 1 0 100 Note that 1 + 2 + 3 + + n = n ( n + 1 ) 2 = 1 0 100 ( 1 0 100 + 1 ) 2 = 5 × 1 0 99 ( 1 0 100 + 1 ) = 5 0000 0000 number of 0s = 99 ( 1 0000 0000 number of 0s = 99 1 ) = 5 0000 0000 number of 0s = 99 5 0000 0000 number of 0s = 99 \begin{aligned} S & = 1 + 2 + 3 + \cdots + 10^{100} & \small \blue{\text{Note that }1+2+3+\cdots + n= \frac {n(n+1)}2} \\ & = \frac {10^{100}(10^{100}+1)}2 \\ & = 5 \times 10^{99}(10^{100}+1) \\ & = 5\underbrace{0000 \cdots 0000}_{\text{number of 0s}=99}(1\underbrace{0000 \cdots 0000}_{\text{number of 0s}=99}1) \\ & = 5\underbrace{0000 \cdots 0000}_{\text{number of 0s}=99}5\underbrace{0000 \cdots 0000}_{\text{number of 0s}=99} \end{aligned}

Therefore the sum of digits of S S is 5 + 5 = 10 5+5 = \boxed {10} .

Thank You very Much .

محمد أبو العمايم - 3 months, 2 weeks ago
Razing Thunder
Jun 11, 2021

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...