Sum of Log

Algebra Level 3

For n N , n 2 n\in\mathbb{N},n\geq2 k = 2 n 1 log k n ! = ? \sum_{k=2}^n\dfrac{1}{\log_kn!}=?

Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8. 8! = 1\times2\times3\times\cdots\times8.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Apr 9, 2021

Easily solved via a change-of-base in the logarithm:

log k n ! = ln n ! ln k Σ k = 2 n ln k ln n ! ; \large \log_{k} n! = \large \frac{\ln n!}{\ln k} \Rightarrow \large \Sigma_{k=2}^{n} \frac{\ln k}{\ln n!};

or 1 ln n ! Σ k = 2 n ln k \frac{1}{\ln n!} \cdot \Sigma_{k=2}^{n} \ln k ;

or 1 ln n ! ( ln 2 + ln 3 + . . . + ln n ) ; \frac{1}{\ln n!} \cdot (\ln 2 + \ln 3 + ... + \ln n);

or 1 ln n ! ln ( 2 3 . . . n ) ; \frac{1}{\ln n!} \cdot \ln (2 \cdot 3 \cdot ... \cdot n);

or 1 ln n ! ln n ! = 1 . \frac{1}{\ln n!} \cdot \ln n! = \boxed{1}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...