Sum of Logs

Algebra Level 2

The sum n = 1 4 log 0.5 3 2 1 n log 0.5 8 n + 2 \sum_{n=1}^4 \frac{ \log_{0.5}32^{\frac{1}{n}}}{ \log_{0.5}8^{n+2}} equals:

This question was taken from ITA (Instituto Tecnológico da Aeronáutica) Brazil 2013-2014 entrance exam.

17/18 8/9 14/15 15/16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Since 32 = ( 1 2 ) 5 log 0.5 32 = 5 32 = (\frac {1}{2})^{-5} \Rightarrow \log_{0.5} {32} = -5 . Similarly, log 0.5 8 = 3 \log_{0.5} {8} = -3 .

Therefore,

n = 1 4 log 0.5 32 1 n log 0.5 8 n + 2 = n = 1 4 5 3 n ( n + 2 ) = 5 3 n = 1 4 1 n ( n + 2 ) \sum _{n=1} ^4 {\frac {\log_{0.5} {32} ^{\frac{1}{n} } }{\log_{0.5} {8}^{n+2} }} = \sum _{n=1} ^4 {\frac {-5} {-3n(n+2)}} = \frac {5} {3} \sum _{n=1} ^4 {\frac {1} {n(n+2)}}

= 5 3 ( 1 3 + 1 8 + 1 15 + 1 24 ) = 5 3 × 40 + 15 + 8 + 5 120 = 5 3 × 68 120 = 17 18 \quad = \frac {5}{3} \left( \frac {1} {3} + \frac {1} {8} + \frac {1} {15} + \frac {1} {24} \right) = \frac {5} {3} \times \frac {40+15+8+5} {120} = \frac {5} {3} \times \frac {68} {120} = \boxed{\frac {17} {18}}

Akash Deep
Aug 19, 2014

k = log 2 1 2 5 n log 2 1 2 3 n + 6 , n o w b y d e f i n i t i o n o f l o g w e c a n e a s i l y o b t a i n t h e n u m e r a t o r = 5 n a n d d e n o m i n a t o r = 3 n 6 s i m p l i f t i n g w e g e t k = 5 3 n ( n + 2 ) n o w g e t 4 v a l u e s o f k f o r n = 1 t o 4 a n d a d d a l l t h e v a l u e s t o f i n a l l y g e t t h e a n s w e r a s 17 18 k\quad =\frac { \log _{ { 2 }^{ -1 }\quad }{ { 2 }^{ \frac { 5 }{ n } } } }{ \log _{ { { 2 }^{ -1 }\quad }^{ } }{ { 2 }^{ 3n+6 } } } ,\quad now\quad by\quad definition\quad of\quad log\quad we\quad can\\ easily\quad obtain\quad the\quad numerator\quad =\quad \frac { -5 }{ n } \quad and\\ denominator\quad =\quad -3n-6\\ simplifting\quad we\quad get\quad k\quad =\quad \frac { 5 }{ 3n(n+2) } \\ now\quad get\quad 4\quad values\quad of\quad k\quad for\quad n\quad =\quad 1\quad to\quad 4\quad and\quad add\quad all\quad the\quad \\ values\quad to\quad finally\quad get\quad the\quad answer\quad as\quad \frac { 17 }{ 18 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...