Sum of n n advanced

Algebra Level 1

We know that Gauss calculate k = 1 n k = n ( n + 1 ) 2 \displaystyle \sum_{k=1}^n k=\frac{n(n+1)}{2}

But if we write in form of a + ( a + 1 ) + ( a + 2 ) + ( a + 3 ) + ( a + 4 ) + ( a + 5 ) + + ( a + n ) a+(a+1)+(a+2)+(a+3)+(a+4)+(a+5)+\dots+(a+n) which is k = a n + a k \displaystyle \sum_{k=a}^{n+a} k such that a 1 a \ne 1 then what k = a n + a k \displaystyle \sum_{k=a}^{n+a} k equals to?

( n + 1 ) ( 2 a + n ) 2 \frac{(n+1)(2a+n)}{2} ( n + 1 ) 2 ( 2 a + n ) \frac{(n+1)}{2(2a+n)} ( n + 1 ) ( 2 a n ) 2 \frac{(n+1)(2a-n)}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

David Vreken
Sep 3, 2018

a + ( a + 1 ) + ( a + 2 ) + ( a + 3 ) + ( a + 4 ) + ( a + 5 ) + + ( a + n ) a+(a+1)+(a+2)+(a+3)+(a+4)+(a+5)+\dots+(a+n)

= ( n + 1 ) a + ( 1 + 2 + 3 + 4 + 5 + + n ) = (n + 1)a + (1 + 2 + 3 + 4 + 5 +\dots+n)

= ( n + 1 ) a + n ( n + 1 ) 2 = (n + 1)a + \frac{n(n + 1)}{2}

= 2 a ( n + 1 ) 2 + n ( n + 1 ) 2 = \frac{2a(n + 1)}{2} + \frac{n(n + 1)}{2}

= ( 2 a + n ) ( n + 1 ) 2 = \frac{(2a + n)(n + 1)}{2}

= ( n + 1 ) ( 2 a + n ) 2 = \frac{(n + 1)(2a + n)}{2}

This is the method I tried and got the answer easily.

Pavitra Golchha - 2 years, 8 months ago

k = a n + a k = j = 0 n ( a + j ) = j = 0 n a + j = 0 n j \displaystyle\sum_{k=a}^{n+a} k = \displaystyle\sum_{j=0}^{n}(a+j) =\displaystyle\sum_{j=0}^{n} a + \displaystyle\sum_{j=0}^{n} j
j = 0 n a + j = 0 n j = a j = 0 n 1 + j = 1 n j \displaystyle\sum_{j=0}^{n} a + \displaystyle\sum_{j=0}^{n} j = a \displaystyle\sum_{j=0}^{n} 1 + \displaystyle\sum_{j=1}^{n} j since a is considered to be constant over the series
j = 0 n 1 = ( n + 1 ) \displaystyle\sum_{j=0}^{n} 1 = (n+1) (adding one n+1 times) and j = 1 n j = n ( n + 1 ) 2 \displaystyle\sum_{j=1}^{n} j = \frac{n(n+1)}{2} by gauss's formula.
a j = 0 n 1 + j = 1 n j = a ( n + 1 ) + 1 2 n ( n + 1 ) = ( n + 1 ) ( a + n 2 ) a \displaystyle\sum_{j=0}^{n} 1 + \displaystyle\sum_{j=1}^{n} j = a(n+1) + \frac{1}{2}n(n+1) = (n+1)(a+\frac{n}{2}) by factoring
( n + 1 ) ( a + n 2 ) = 1 2 ( 2 a + n ) ( n + 1 ) (n+1)(a+\frac{n}{2}) = \frac{1}{2}(2a+n)(n+1) which is equivalent to the first option


V N
Sep 27, 2018

Since k = a n + k k = k = 1 n + k k k = 1 a 1 k \sum_{k=a}^{n+k} k = \sum_{k=1}^{n+k} k - \sum_{k=1}^{a-1} k it equals ( a + n ) ( a + n + 1 ) 2 ( a 1 ) a 2 = 1 2 ( 2 a + 2 a n + n 2 + n ) = 1 2 ( n + 1 ) ( n + 2 a ) \frac{\left(a+n\right)\left(a+n+1\right)}{2}-\frac{\left(a-1\right)a}{2} = \frac{1}{2}\left(2a + 2an + n^2 + n\right) = \frac{1}{2}\left(n+1\right)\left(n+2a\right)

Aaryan Vaishya
Dec 9, 2018

I just considered the case a=0 and found that the 3rd one is correct.

Gia Hoàng Phạm
Sep 15, 2018

a + ( a + 1 ) + ( a + 2 ) + ( a + 3 ) + ( a + 4 ) + ( a + 5 ) + + ( a + n ) = a ( n + 1 ) + n ( n + 1 ) 2 = ( 2 a + n ) ( n + 1 ) 2 a+(a+1)+(a+2)+(a+3)+(a+4)+(a+5)+\dots+(a+n)=a(n+1)+\frac{n(n+1)}{2}=\frac{(2a+n)(n+1)}{2}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...