Sum of n n avanced Part 2

Algebra Level pending

We know that Gauss calculate k = 1 n k = n ( n + 1 ) 2 \displaystyle \sum_{k=1}^n k=\frac{n(n+1)}{2}

But what if we write in form of a + ( a + b ) + ( a + 2 b ) + ( a + 3 b ) + ( a + 4 b ) + ( a + 5 b ) + + ( a + n b ) a+(a+b)+(a+2b)+(a+3b)+(a+4b)+(a+5b)+\dots+(a+nb) then what does it equal to?

( n + 1 ) 2 ( 2 a + n b ) \frac{(n+1)}{2(2a+nb)} ( 2 a n b ) ( n + 1 ) 2 \frac{(2a-nb)(n+1)}{2} ( 2 a + n b ) ( n + 1 ) 2 \frac{(2a+nb)(n+1)}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

S = a + ( a + b ) + ( a + 2 b ) + + ( a + n b ) = a + k = 1 n ( a + k b ) = a + a k = 1 n 1 + b k = 1 n k = a + n a + b n ( n + 1 ) 2 = a ( n + 1 ) + b n ( n + 1 ) 2 = ( 2 a + n b ) ( n + 1 ) 2 \begin{aligned} S & = a + (a+b) + (a+2b) + \cdots + (a+nb) \\ & = a + \sum_{k=1}^n (a+kb) \\ & = a + a \sum_{k=1}^n 1 + b \sum_{k=1}^n k \\ & = a + na + \frac {bn(n+1)}2 \\ & = a(n+1) + \frac {bn(n+1)}2 \\ & = \boxed{\dfrac {(2a+nb)(n+1)}2} \end{aligned}

Brian Moehring
Oct 3, 2018

Add the sum with itself in reversed order: S = a + ( a + b ) + + ( a + ( n 1 ) b ) + ( a + n b ) ( n + 1 terms ) + S = ( a + n b ) + ( a + ( n 1 ) b ) + + ( a + b ) + a ( n + 1 terms ) 2 S = ( 2 a + n b ) + ( 2 a + n b ) + + ( 2 a + n b ) + ( 2 a + n b ) ( n + 1 terms ) \begin{array}{cccccccccccccc} & S & = & a & + & (a+b) & + & \cdots & + & (a+(n-1)b) & + & (a+nb) & \qquad & \left(n+1 \text{ terms}\right) \\ + & S & = & (a+nb) & + & (a+(n-1)b) & + & \cdots & + & (a+b) & + & a & & \left(n+1 \text{ terms}\right) \\ \hline \\ & 2S & = & (2a+nb) & + & (2a+nb) & + & \cdots & + & (2a+nb) & + & (2a+nb) & & \left(n+1 \text{ terms}\right) \end{array}

Therefore, since 2 S 2S is the sum of n + 1 n+1 copies of 2 a + n b , 2a+nb, we have 2 S = ( 2 a + n b ) ( n + 1 ) , 2S = (2a+nb)(n+1), and S = ( 2 a + n b ) ( n + 1 ) 2 S = \frac{(2a+nb)(n+1)}{2}

a + ( a + b ) + ( a + 2 b ) + ( a + 3 b ) + ( a + 4 b ) + ( a + 5 b ) + + ( a + n b ) = a ( n + 1 ) + n b ( n + 1 ) 2 = ( 2 a + n b ) ( n + 1 ) 2 a+(a+b)+(a+2b)+(a+3b)+(a+4b)+(a+5b)+\dots+(a+nb)=a(n+1)+\frac{nb(n+1)}{2}=\frac{(2a+nb)(n+1)}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...