Sum of powers

Algebra Level 3

{ a + b + c = 1 a 2 + b 2 + c 2 = 21 a 3 + b 3 + c 3 = 55 \begin{cases} a+b+c=1\\ { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }=21\\ { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }=55 \end{cases}

Given that a , b a,b and c c satisfy the system of equations above, find ( a 1 ) ( b 1 ) ( c 1 ) (a-1)(b-1)(c-1) .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

a + b + c = 1 a+b+c=1
a 2 + b 2 + c 2 = 21 a^2+b^2+c^2=21
a 3 + b 3 + c 3 = 55 a^3+b^3+c^3=55

( a + b + c ) 2 2 ( a b + b c + c a ) = 21 (a+b+c)^2-2(ab+bc+ca)=21
= ( a b + b c + c a ) = 10 =\Rightarrow (ab+bc+ca)=-10

a 3 + b 3 + c 3 3 a b c = 55 3 a b c a^3+b^3+c^3-3abc=55-3abc
= ( a + b + c ) ( a 2 + b 2 + c 2 ( a b + b c + c a ) ) = 55 3 a b c =(a+b+c)(a^2+b^2+c^2-(ab+bc+ca))=55-3abc
= ( a b c ) = 8 =\Rightarrow (abc)=8

( a 1 ) ( b 1 ) ( c 1 ) (a-1)(b-1)(c-1)
= ( a b c ) ( a b + b c + c a ) + ( a + b + c ) 1 =(abc)-(ab+bc+ca)+(a+b+c)-1
= 8 + 10 + 1 1 = 18 =\Rightarrow 8+10+1-1=\boxed{18}

Aditya Agarwal
Jan 6, 2016

Let a , b , c a,b,c be the roots of a cubic polynomial p ( x ) p(x) .

Now, by Newton's Sums, we get one of those polynomials to be equal to, p ( x ) = ( x 3 x 2 10 x 8 ) p(x)=(x^3-x^2-10x-8) .

It would be of the form, p ( x ) = ( a x ) ( b x ) ( c x ) p(x)=-(a-x)(b-x)(c-x) ,for some constant k k .

So we get p ( 1 ) = ( a 1 ) ( b 1 ) ( c 1 ) = 18 p(1)=-(a-1)(b-1)(c-1)=\boxed{-18}

Nicely done !! (+1)

Akshat Sharda - 5 years, 5 months ago

Log in to reply

Thanks! Inspired by you only! "The use of Newton Sums!"

Aditya Agarwal - 5 years, 5 months ago

Another solution is using the identity a 3 + b 3 + c 3 = ( a + b + c ) 3 3 ( a + b + c ) ( a b + b c + c a ) + 3 a b c . a^3+b^3+c^3=(a+b+c)^3-3(a+b+c)(ab+bc+ca)+3abc. From given conditions, we have 55 = 1 3 ( a b + b c + c a ) + 3 a b c . 55=1-3(ab+bc+ca)+3abc. So we get that a b c ( a b + b c + c a ) = 18 abc-(ab+bc+ca)=18 . The desired expression is a b c ( a b + b c + c a ) + ( a + b + c ) 1 = 18 + 1 1 = 18. abc-(ab+bc+ca)+(a+b+c)-1=18+1-1=18. Note that this solution doesn't need a 2 + b 2 + c 2 = 21 a^2+b^2+c^2=21 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...