Sum of Powers of Three Equals a Cube?

3 x + 3 y + 3 z + 3 t = n 3 \Large{3^x + 3^y + 3^z + 3^t = n^3}

How many non-ordered pairs of non-negative integers ( x , y , z , t , n ) (x,y,z,t,n) exists satisfying the above equation?

1 0 5 3 4 \large{\infty} Data Insufficient. Can't be solved. 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Satyajit Mohanty
Aug 7, 2015

For any non-negative integers a , b a,b , we have:

( 3 a + 3 b ) 3 = ( 3 a ) 3 + 3 ( 3 a ) 2 ( 3 b ) + 3 ( 3 a ) ( 3 b ) 2 + ( 3 b ) 3 (3^a + 3^b)^3 = (3^a)^3 + 3(3^a)^2 (3^b) + 3(3^a)(3^b)^2 + (3^b)^3 = 3 3 a + 3 2 a + b + 1 + 3 a + 2 b + 1 + 3 3 b = 3^{3a} + 3^{2a+b+1} + 3^{a+2b+1} + 3^{3b} .

Thus for all x = 3 a , y = 2 a + b + 1 , z = a + 2 b + 1 , t = 3 b , n = 3 a + 3 b x=3a, y=2a+b+1, z=a+2b+1, t=3b, n= 3^a + 3^b , where a , b a,b are non-negative integers, the equation satisfies.

Thus, infinite solutions.

Think you made a small typo in line 1 1 - the coefficient of ( 3 a ) ( 3 b ) 2 (3^a)(3^b)^2 should be 3 3 . Nice solution!

Ryan Tamburrino - 5 years, 10 months ago

Log in to reply

Thanks for letting me know about the Typo

Satyajit Mohanty - 5 years, 10 months ago

Interesting.

Vishnu Bhagyanath - 5 years, 10 months ago

Log in to reply

Haha! :D Yes it is.

Satyajit Mohanty - 5 years, 10 months ago
汶良 林
Aug 8, 2015

3 1 + 3 1 + 3 0 + 3 0 = 2 3 3^{1} + 3^{1} + 3^{0} + 3^{0} = 2^{3}

( 3 1 + 3 1 + 3 0 + 3 0 ) × 3 3 n = 2 3 × 3 3 n ( 3^{1} + 3^{1} + 3^{0} + 3^{0} )×3^{3n} = 2^{3}×3^{3n}

3 3 n + 1 + 3 3 n + 1 + 3 3 n + 3 3 n = ( 2 × 3 n ) 3 3^{3n+1} + 3^{3n+1} + 3^{3n} + 3^{3n} = (2×3^{n})^{3}

T h u s , i n f i n i t e s o l u t i o n s . Thus, infinite solutions.

Mathh Mathh
Aug 7, 2015

( x , y , z , t , n ) = ( 3 k , 3 k , 3 k + 1 , 3 k + 1 , 2 3 k ) (x,y,z,t,n)=(3k,3k,3k+1,3k+1,2\cdot 3^k) with k 1 k\ge 1 gives infinitely many non-negative 5-tuples ( x , y , z , t , n ) (x,y,z,t,n) satisfying the equation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...