Sum of real roots

Algebra Level 3

1 x 3 + x + 3 3 = 5 2 \large \sqrt [ 3 ]{ 1-x } +\sqrt [ 3 ]{ x+3 } =\frac{5}{2}

Find sum of all real solutions of the equation above.


Inspiration .


The answer is -2.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

1 x 3 + x + 3 3 = 5 2 ( 1 x 3 + x + 3 3 ) 3 = ( 5 2 ) 3 1 x + 3 ( 1 x ) 2 ( x + 3 ) 3 + 3 ( 1 x ) ( x + 3 ) 2 3 + x + 3 = 125 8 4 + 3 ( 1 x ) ( x + 3 ) 3 ( 1 x 3 + x + 3 3 ) = 125 8 3 ( 5 2 ) ( 1 x ) ( x + 3 ) 3 = 125 8 4 ( 1 x ) ( x + 3 ) 3 = 31 20 3 2 x x 2 = ( 31 20 ) 3 x 2 + 2 x 3 + ( 31 20 ) 3 = 0 \begin{aligned} \sqrt[3]{1-x} + \sqrt[3]{x+3} & = \frac 52 \\ \left(\sqrt[3]{1-x} + \sqrt[3]{x+3} \right)^3 & = \left(\frac 52\right)^3 \\ 1-x + 3\sqrt[3]{(1-x)^2(x+3)} + 3\sqrt[3]{(1-x)(x+3)^2} + x + 3 & = \frac {125}8 \\ 4 + 3\sqrt[3]{(1-x)(x+3)}\left({\color{#3D99F6}\sqrt[3]{1-x} + \sqrt[3]{x+3}} \right) & = \frac {125}8 \\ 3\left({\color{#3D99F6}\frac 52} \right) \sqrt[3]{(1-x)(x+3)} & = \frac {125}8 - 4 \\ \sqrt[3]{(1-x)(x+3)} & = \frac {31}{20} \\ 3 -2x - x^2 & = \left(\frac {31}{20}\right)^3 \\ \implies x^2+{\color{#D61F06}2}x - 3 + \left(\frac {31}{20}\right)^3 & = 0 \end{aligned}

Since 2 2 4 ( 3 + ( 31 20 ) 3 ) > 0 2^2 - 4 \left(-3 + \left(\frac {31}{20}\right)^3 \right) > 0 , there are two real roots x x . By Vieta's formula , we have sum of the two real roots equal to 2 \boxed{{\color{#D61F06}-2}} .

Chan Lye Lee
May 2, 2017

Method 1

Let a = 1 x 3 a=\sqrt [ 3 ]{ 1-x } and b = x + 3 3 b=\sqrt [ 3 ]{ x+3 } . Now a + b = 5 2 a+b=\frac{5}{2} . If each side is raised to the 3rd power, we have a 3 + b 3 + 3 a b ( a + b ) = 125 8 a^3+b^3+3ab(a+b)=\frac{125}{8} . Substitute a + b = 5 2 a+b=\frac{5}{2} and a 3 + b 3 = 4 a^3+b^3 = 4 to the left-hand-side, and finally obtain a b = 31 20 ab=\frac{31}{20} .

Since a + b = 5 2 a+b=\frac{5}{2} and a b = 31 20 ab=\frac{31}{20} , we note that a a and b b are roots to the equation u 2 5 2 u + 31 20 = 0 u^2-\frac{5}{2}u+\frac{31}{20}=0 . Solve this quadratic equation and it gives u = 5 4 ± 1 4 5 u=\frac{5}{4} \pm \frac{1}{4\sqrt{5}} .

This means that a = 1 x 3 = 5 4 + 1 4 5 a=\sqrt [ 3 ]{ 1-x } =\frac{5}{4} + \frac{1}{4\sqrt{5}} or a = 1 x 3 = 5 4 1 4 5 a=\sqrt [ 3 ]{ 1-x } =\frac{5}{4} - \frac{1}{4\sqrt{5}} . Hence x = 1 ( 5 4 + 1 4 5 ) 3 x=1-\left(\frac{5}{4} + \frac{1}{4\sqrt{5}}\right)^3 or x = 1 ( 5 4 1 4 5 ) 3 x=1-\left(\frac{5}{4} - \frac{1}{4\sqrt{5}}\right)^3 . Note that each of these is a real number.

The sum of real roots is 2 [ ( 5 4 + 1 4 5 ) 3 + ( 5 4 1 4 5 ) 3 ] = 2 2 [ ( 5 4 ) 3 + 3 ( 5 4 ) ( 1 4 5 ) 2 ] = 2 2 [ 125 64 + 3 64 ] = 2 2-\left[\left(\frac{5}{4} + \frac{1}{4\sqrt{5}}\right)^3+\left(\frac{5}{4} - \frac{1}{4\sqrt{5}}\right)^3\right] = 2-2\left[ \left(\frac{5}{4}\right)^3+3\left(\frac{5}{4}\right)\left(\frac{1}{4\sqrt{5}}\right)^2\right] = 2-2\left[ \frac{125}{64}+\frac{3}{64}\right]=\boxed{-2} .

Method 2

Since 1 x 3 + x + 3 3 = 2 ( x 1 ) 3 + 2 + ( 1 x ) 3 \sqrt [ 3 ]{ 1-x }+\sqrt [ 3 ]{ x+3 }=\sqrt [ 3 ]{ 2-(x-1) }+\sqrt [ 3 ]{ 2+(1-x) } . This means that the graph of f ( x ) = 1 x 3 + x + 3 3 f(x)=\sqrt [ 3 ]{ 1-x }+\sqrt [ 3 ]{ x+3 } is symmetry about x = 1 x=-1 . By sketching the graph of y = f ( x ) y=f(x) , we know that there are two solutions to f ( x ) = 5 2 f(x)=\frac{5}{2} . Then the solution is of x 1 = 1 + α x_1=-1+\alpha and x 2 = 1 α x_2=-1-\alpha for some α > 0 \alpha>0 . So the sum of roots is 2 \boxed{-2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...