Sum of reciprocal products

Calculus Level 1

1 2 + 3 4 × 2 + 5 6 × 4 × 2 + 7 8 × 6 × 4 × 2 + = ? \frac 1{2}+\frac 3{4\times2}+\frac 5{6\times4\times2}+\frac 7{8\times6\times4\times2}+\cdots=\, ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

The n th term of the sequence is given by T n = 2 n 1 2 n n ! S = n = 1 T n = n = 1 2 n 1 2 n n ! = n = 1 1 2 n 1 ( n 1 ) ! 1 2 n n ! We can easily see that the sum telescopes, S = 1 2 1 1 ( 1 1 ) ! = 1 \begin{aligned}\text{The n th term} &\text{ of the sequence is given by}\\ T_{n}&=\dfrac{2n-1}{2^n n!}\\ S&=\sum_{n=1}^{\infty}T_{n}\\ &=\sum_{n=1}^{\infty}\dfrac{2n-1}{2^n n!}\\ &=\sum_{n=1}^{\infty}\dfrac{1}{2^{n-1} (n-1)!}-\dfrac{1}{2^n n!}\\ \text{We can easily} &\text{ see that the sum telescopes,}\\ S&=\dfrac{1}{2^{1-1} (1-1)!}\\ &=\color{#EC7300}\boxed{\color{#333333}1}\end{aligned}

Same as mine method

Shubham Sen - 3 years, 5 months ago

how did you do the partial fractions?

Jimson Paulo Reboja - 3 years, 1 month ago

Log in to reply

a + b c = a c + b c \frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}

Hassan Abdulla - 2 years, 9 months ago

That's wrong.You haven't chosen the right nth term.

Ll Na - 2 years, 10 months ago

That's not the correct answer!

Jose Federico Vizcaino Gonzalez - 2 years, 8 months ago

Log in to reply

Sorry, the answer is perfect!

Jose Federico Vizcaino Gonzalez - 2 years, 8 months ago
Nico Geelen
Aug 3, 2019

Observation of this sum tells us all numerators are odd. Wasn't that written as 2 k 1 2k-1 ? It actually is and the denominators are all products of consecutive even numbers which seems to be the same as ( 2 k ) ! ! (2k)!! , where the double exclamation mark stands for ‘double factorial’ or ‘semifactorial’ and can be rewritten as a single factorial. So now let us rewrite the different terms.

S = 2 1 1 1 2 + 2 2 1 2 2 1 2 + 2 3 1 3 2 2 2 1 2 + 2 4 1 4 2 3 2 2 2 1 2 ) + = k = 1 2 k 1 2 k k ! = k = 1 2 k 2 k k ! k 1 k 1 1 2 k k ! = k = 1 2 2 k ( k 1 ) ! 1 2 k k ! = k = 1 1 2 k 1 ( k 1 ) ! 1 2 k k ! (‘telescoping sum’: most terms will cancel out) = 1 1 1 2 + 1 2 1 8 + 1 8 1 48 + 1 48 1 384 + 1 384 + 1 = 1 0 = 1 \begin{aligned} S &= \dfrac{2\cdot \red{1}-1}{\red{1}\cdot 2} + \dfrac{2\cdot \red{2}-1}{\red{2}\cdot 2\cdot \red{1}\cdot 2} + \dfrac{2\cdot \red{3}-1}{\red{3}\cdot 2\cdot \red{2}\cdot 2\cdot \red{1}\cdot 2} + \dfrac{2\cdot \red{4}-1}{\red{4}\cdot 2\cdot \red{3}\cdot 2\cdot \red{2}\cdot 2\cdot \red{1}\cdot 2)} + \ldots\\[18pt] &= \sum_{k=1}^{\infty}\frac{2k-1}{2^k k!}\\[18pt] &= \sum_{k=1}^{\infty}\frac{2k}{2^kk!}\red{\cdot\frac{k^{-1}}{k^{-1}}} - \frac{1}{2^kk!}\\[18pt] &= \sum_{k=1}^{\infty}\frac{2}{2^k(k-1)!} - \frac{1}{2^kk!}\\[18pt] &= \sum_{k=1}^{\infty}\frac{1}{2^{k-1}(k-1)!} - \frac{1}{2^kk!} \enspace\red{\text{(‘telescoping sum’: most terms will cancel out)}}\\[18pt] &= \frac11 \red{- \frac12 + \frac12 - \frac18 + \frac18 - \frac{1}{48} + \frac{1}{48} - \frac{1}{384} + \frac{1}{384} -+ \ldots} - \frac{1}{\infty}\\[18pt] &= 1 - 0 = \boxed{1} \end{aligned}

Ruofeng Liu
Nov 28, 2019

Just for the sake of diversity, a solution with Taylor's series:

re-write the original problem

1 2 + 3 4 × 2 + 5 6 × 4 × 2 + = 1 2 + 3 2 2 2 ! + 5 2 3 3 ! + \displaystyle \frac{1}{2}+\frac{3}{4\times 2}+\frac{5}{6\times 4\times 2}+\cdots=\frac{1}{2}+\frac{3}{2^2\cdot 2!}+\frac{5}{2^3\cdot 3!}+\cdots

We know that

e x 2 1 = x 2 + x 4 2 ! + x 6 3 ! + \displaystyle e^{x^2}-1= x^2+\frac{x^4}{2!}+\frac{x^6}{3!}+\cdots

e x 2 1 x = x + x 3 2 ! + x 5 3 ! + \displaystyle \frac{e^{x^2}-1}{x}= x+\frac{x^3}{2!}+\frac{x^5}{3!}+\cdots

differentiate both sides:

( 2 x 2 1 ) e x 2 + 1 x 2 = 1 + 3 x 2 2 ! + 5 x 4 3 ! + \displaystyle \frac{(2x^2-1)e^{x^2}+1}{x^2}= 1+\frac{3x^2}{2!}+\frac{5x^4}{3!}+\cdots

( 2 x 2 1 ) e x 2 + 1 2 x 2 = 1 2 + 3 x 2 2 2 ! + 5 x 4 2 3 ! + \displaystyle \frac{(2x^2-1)e^{x^2}+1}{2x^2}= \frac{1}{2}+\frac{3x^2}{2\cdot 2!}+\frac{5x^4}{2\cdot 3!}+\cdots

now plug in x = 1 2 \displaystyle x=\frac{1}{\sqrt{2}}

1 = 1 2 + 3 2 2 2 ! + 5 2 3 3 ! + \displaystyle 1 = \frac{1}{2}+\frac{3}{2^2\cdot 2!}+\frac{5}{2^3\cdot 3!}+\cdots

Vishal Kumar
Dec 9, 2017

Use harmonic progression with telescoping series

It sums to 1 - 1/infinity where 1/infinity is 0 so answer is 1 - 0 = 1

Sachin Patil - 2 years, 8 months ago

Let S = 1/2 + 1/4 2 + 1/6 4 2 + 1/8 6 4 2 +..... =1/2 + (1/2) (1-3/4) + (1/4 2) (1-5/6) + (1/6 4 2) (1-7/8)+........ =1/2 + 1/2 + 1/4 2 + 1/6 4 2 +..... -(3/4 2 + 5/6 4 2 + 7/8 6 4 2+......) So, S=1/2 + S -(3/4 2 + 5/6 4 2 + 7/8 6 4 2+......) So, (3/4 2 + 5/6 4 2 + 7/8 6 4 2+......) = 1/2 So, ½ + 3/4 2 + 5/6 4 2 + 7/8 6 4*2+......) = ½+½=1

Priyangshu Pramanick - 1 year, 10 months ago

most simple answer:

1 2 + 3 4 × 2 + 5 6 × 4 × 2 + 7 8 × 6 × 4 × 2 + \frac{1}{2} + \frac{3}{4\times2} + \frac{5}{6\times4\times2} + \frac{7}{8\times6\times4\times2} + \cdots

converting the numerator to a subtraction:

1 2 + 4 1 4 × 2 + 6 1 6 × 4 × 2 + 8 1 8 × 6 × 4 × 2 + \frac{1}{2} + \frac{4-1}{4\times2} + \frac{6-1}{6\times4\times2} + \frac{8-1}{8\times6\times4\times2} + \cdots (the key is see that the substraction in the numerator has the max value of the denominator and 1 xD)

splitting fractions and simplifying factors:

1 2 + ( 4 4 × 2 1 4 × 2 ) + ( 6 6 × 4 × 2 1 6 × 4 × 2 ) + ( 6 8 × 6 × 4 × 2 1 8 × 6 × 4 × 2 ) + \frac{1}{2} + (\frac{4}{4\times 2} - \frac{1}{4\times 2}) + (\frac{6}{6\times4\times2} - \frac{1}{6\times4\times2}) + (\frac{6}{8\times6\times4\times2} - \frac{1}{8\times6\times4\times2}) + \cdots

1 2 + ( 1 2 1 4 × 2 ) + ( 1 4 × 2 1 6 × 4 × 2 ) + ( 1 6 × 4 × 2 1 8 × 6 × 4 × 2 ) + \frac{1}{2} + (\frac{1}{2} - \frac{1}{4\times 2}) + (\frac{1}{4\times2} - \frac{1}{6\times4\times2}) + (\frac{1}{6\times4\times2} - \frac{1}{8\times6\times4\times2}) + \cdots

cancelling similar terms:

1 2 + 1 2 + 0 + 0 + 0 + = 1 \frac{1}{2} + \frac{1}{2} + 0 + 0 + 0 + \cdots = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...