Sum of Reciprocal Squares

Calculus Level 3

1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + = π 2 6 \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots = \frac{\pi^2}{6}

Given the above, find N N that satisfies the equation below.

1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + = π 2 N \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\cdots = \frac{ \pi^2} { N}


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arpon Paul
Dec 14, 2016

Given, S = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + . . . = π 2 6 S = \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+... \infty = \frac{\pi^2}{6} Let, S 1 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + . . . S_1=\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...\infty and S 2 = 1 2 2 + 1 4 2 + 1 6 2 + 1 8 2 + . . . S_2=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+... \infty Now, S 2 = 1 4 ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + . . . ) = S 4 S_2=\frac{1}{4}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+... \right)=\frac{S}{4} Again, S = S 1 + S 2 S=S_1+S_2 S = S 1 + S 4 \implies S=S_1+\frac{S}{4} S 1 = 3 S 4 = π 2 8 \implies S_1=\frac{3S}{4}=\frac{\pi^2}{8}

Did the same way, but how can we do it by calculus ? Any hint ??

Bhaskar Pandey - 2 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...