Sum of reciprocals of fourth powers

Calculus Level 2

Find the exact sum of n = 1 1 n 4 = 1 + 1 2 4 + 1 3 4 + 1 4 4 + \sum_{n=1}^\infty \frac{1}{n^4}= 1+\frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots also known as ζ ( 4 ) \zeta(4) , where ζ ( s ) \zeta(s) is the Riemann zeta function .


Hint : Follow Euler's famous solution of the Basel problem .

π 4 36 \dfrac{\pi^{4}}{36} π 4 120 \dfrac{\pi^{4}}{120} π 2 12 \dfrac{\pi^{2}}{12} π 4 90 \dfrac{\pi^{4}}{90}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Stigant
Apr 11, 2019

As before:

sin ( x ) x = 1 x 2 3 ! + x 4 5 ! x 6 7 ! + . . . = ( 1 x 2 π 2 ) ( 1 x 2 4 π 2 ) ( 1 x 2 9 π 2 ) . . . \frac{{\sin \left( x \right)}}{x} = 1 - \frac{{{x^2}}}{{3!}} + \frac{{{x^4}}}{{5!}} - \frac{{{x^6}}}{{7!}} + ... = \left( {1 - \frac{{{x^2}}}{{{\pi ^2}}}} \right)\left( {1 - \frac{{{x^2}}}{{4{\pi ^2}}}} \right)\left( {1 - \frac{{{x^2}}}{{9{\pi ^2}}}} \right)...

Now, substituting ix for x yields:

sin ( i x ) i x = 1 ( i x ) 2 3 ! + ( i x ) 4 5 ! ( i x ) 6 7 ! + . . . = ( 1 ( i x ) 2 π 2 ) ( 1 ( i x ) 2 4 π 2 ) ( 1 ( i x ) 2 9 π 2 ) . . . \frac{{\sin \left( {ix} \right)}}{{ix}} = 1 - \frac{{{{\left( {ix} \right)}^2}}}{{3!}} + \frac{{{{\left( {ix} \right)}^4}}}{{5!}} - \frac{{{{\left( {ix} \right)}^6}}}{{7!}} + ... = \left( {1 - \frac{{{{\left( {ix} \right)}^2}}}{{{\pi ^2}}}} \right)\left( {1 - \frac{{{{\left( {ix} \right)}^2}}}{{4{\pi ^2}}}} \right)\left( {1 - \frac{{{{\left( {ix} \right)}^2}}}{{9{\pi ^2}}}} \right)...

Or

sin ( i x ) i x = 1 + x 2 3 ! + x 4 5 ! + x 6 7 ! + . . . = ( 1 + x 2 π 2 ) ( 1 + x 2 4 π 2 ) ( 1 + x 2 9 π 2 ) . . . \frac{{\sin \left( {ix} \right)}}{{ix}} = 1 + \frac{{{x^2}}}{{3!}} + \frac{{{x^4}}}{{5!}} + \frac{{{x^6}}}{{7!}} + ... = \left( {1 + \frac{{{x^2}}}{{{\pi ^2}}}} \right)\left( {1 + \frac{{{x^2}}}{{4{\pi ^2}}}} \right)\left( {1 + \frac{{{x^2}}}{{9{\pi ^2}}}} \right)...

So multiplying the first equation by the second yields:

1 + ( x 2 3 ! x 2 3 ! ) + ( x 4 5 ! x 4 3 ! 2 + x 4 5 ! ) + . . . = ( 1 x 2 π 2 ) ( 1 + x 2 π 2 ) ( 1 x 2 4 π 2 ) ( 1 + x 2 4 π 2 ) ( 1 x 2 9 π 2 ) ( 1 + x 2 9 π 2 ) . . . 1 + \left( {\frac{{{x^2}}}{{3!}} - \frac{{{x^2}}}{{3!}}} \right) + \left( {\frac{{{x^4}}}{{5!}} - \frac{{{x^4}}}{{3{!^2}}} + \frac{{{x^4}}}{{5!}}} \right) + ... = \left( {1 - \frac{{{x^2}}}{{{\pi ^2}}}} \right)\left( {1 + \frac{{{x^2}}}{{{\pi ^2}}}} \right)\left( {1 - \frac{{{x^2}}}{{4{\pi ^2}}}} \right)\left( {1 + \frac{{{x^2}}}{{4{\pi ^2}}}} \right)\left( {1 - \frac{{{x^2}}}{{9{\pi ^2}}}} \right)\left( {1 + \frac{{{x^2}}}{{9{\pi ^2}}}} \right)...

1 x 4 90 + . . . = ( 1 x 4 π 4 ) ( 1 x 4 16 π 4 ) ( 1 x 4 81 π 4 ) . . . 1 - \frac{{{x^4}}}{{90}} + ... = \left( {1 - \frac{{{x^4}}}{{{\pi ^4}}}} \right)\left( {1 - \frac{{{x^4}}}{{16{\pi ^4}}}} \right)\left( {1 - \frac{{{x^4}}}{{81{\pi ^4}}}} \right)...

1 x 4 90 + . . . = 1 x 4 π 4 ( 1 1 4 + 1 2 4 + 1 3 4 + . . . ) + . . . 1 - \frac{{{x^4}}}{{90}} + ... = 1 - \frac{{{x^4}}}{{{\pi ^4}}}\left( {\frac{1}{{{1^4}}} + \frac{1}{{{2^4}}} + \frac{1}{{{3^4}}} + ...} \right) + ...

equating the x 4 x^4 terms:

x 4 90 = x 4 π 4 ( 1 1 4 + 1 2 4 + 1 3 4 + . . . ) - \frac{{{x^4}}}{{90}} = - \frac{{{x^4}}}{{{\pi ^4}}}\left( {\frac{1}{{{1^4}}} + \frac{1}{{{2^4}}} + \frac{1}{{{3^4}}} + ...} \right)

So

π 4 90 = 1 1 4 + 1 2 4 + 1 3 4 + . . . \frac{{{\pi ^4}}}{{90}} = \frac{1}{{{1^4}}} + \frac{1}{{{2^4}}} + \frac{1}{{{3^4}}} + ...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...