Sum of Reciprocals

Algebra Level 3

Given

a + b + c + d = 0 a b c d = 1 a 3 + b 3 + c 3 + d 3 = 1983 \begin{aligned} a+b+c +d & = 0 \\ abcd & = 1 \\ a^3 + b^3 + c^3 + d^3 & = 1983 \\ \end{aligned}

What is the value of 1 a + 1 b + 1 c + 1 d \frac {1}{a} + \frac {1}{b} + \frac {1}{c} + \frac {1}{d} ?


The answer is 661.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

23 solutions

William Cui
Dec 2, 2013

Whenever we see something like 1 a + 1 b + 1 c + 1 d \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} , we try to manipulate it to make it easier to use. In this case, we can put everything in the denominator a b c d abcd , as follows:

1 a + 1 b + 1 c + 1 d \frac{1}{a} + \frac{1}{b} + \frac{1}{c} +\frac{1}{d}

b c d a b c d + a c d a b c d + a b d a b c d + a b c a b c d \implies \frac{bcd}{abcd} + \frac{acd}{abcd} + \frac{abd}{abcd} + \frac{abc}{abcd}

b c d + a c d + a b d + a b c a b c d \implies \frac{bcd + acd + abd + abc}{abcd}

We know this because, we can take out like terms from each of the fractions (For example, b c d a b c d = 1 a \frac{bcd}{abcd} = \frac{1}{a} , since the b c d bcd terms cancel out in both the numerator and the denominator.)

So now we know that we want to find the value of a b c + a c d + a b d + b c d a b c d \frac{abc + acd + abd + bcd}{abcd} . Notice however that the denominator, a b c d abcd , is given to be 1 1 in the question. So, all we need to find is the value of

a b c + a c d + a b d + b c d abc + acd+abd +bcd

Now notice that the values of the terms we are given are

a + b + c + d = 0 , a b c d = 1 , and a 3 + b 3 + c 3 + d 3 = 1983 a+b+c+d=0, abcd=1,\text{ and } a^3+b^3+c^3+d^3 = 1983

Whenever I see something like this, I think to express one expression as a combination of the other two. Let's try to do that with this problem.

Since we see the third equation, a 3 + b 3 + c 3 + d 3 a^3+b^3+c^3+d^3 , we can try cubing a + b + c + d a+b+c+d (With enough experience, this step is just intuition). Let's expand ( a + b + c + d ) 3 (a+b+c+d)^3 :

( a + b + c + d ) 3 (a+b+c+d)^3

( a + b + c + d ) ( a + b + c + d ) ( a + b + c + d ) \implies (a+b+c+d)(a+b+c+d)(a+b+c+d)

a 3 + b 3 + c 3 + d 3 + 3 a 2 b + 3 a 2 c + 3 a 2 d + 3 a b 2 + 3 b 2 c + 3 b 2 d + 3 a c 2 \implies a^3+b^3+c^3+d^3+3a^2b+3a^2c+3a^2d+3ab^2+3b^2c+3b^2d+3ac^2 + 3 b c 2 + 3 c 2 d + 3 a d 2 + 3 b d 2 + 3 c d 2 + 6 a b c + 6 a c d + 6 a b d + 6 b c d + 3bc^2+3c^2d+3ad^2+3bd^2+3cd^2+6abc+6acd+6abd+6bcd

If you have trouble seeing this step, basically, we are taking each each term from each expansion of a + b + c + d a+b+c+d and multiplying it with each term in every other expansion. (Therefore, we can check to see if we expanded correctly if we have a total of 4 3 = 64 4^3=64 terms in our expansion - here we are counting 6 a b c 6abc as 6 terms to be grouped together)

We can group our long expression into three smaller parts. We have

a 3 + b 3 + c 3 + d 3 = a^3+b^3+c^3+d^3 =

a 3 + b 3 + c 3 + d 3 a^3+b^3+c^3+d^3

+ 3 a 2 b + 3 a 2 c + 3 a 2 d + 3 a b 2 + 3 b 2 c + 3 b 2 d + 3 a c 2 + 3 b c 2 + 3 c 2 d + 3 a d 2 + 3 b d 2 + 3 c d 2 + 3a^2b+3a^2c+3a^2d+3ab^2+3b^2c+3b^2d+3ac^2+3bc^2+3c^2d+3ad^2+3bd^2+3cd^2

+ 6 a b c + 6 a c d + 6 a b d + 6 b c d +6abc+6acd+6abd+6bcd

Our first part, a 3 + b 3 + c 3 + d 3 a^3+b^3+c^3+d^3 is easy to determine - it is given that this value is equal to 1983.

Our last part can be factored into 6 ( a b c + a c d + a b d + b c d ) 6(abc+acd+abd+bcd) That seems awfully familiar - it is equal to 6 times the value that we want to compute!

Our middle part is kind of tricky. First, we can take a factor of 3 out to obtain

3 ( a 2 b + a 2 c + a 2 d + a b 2 + b 2 c + b 2 d + a c 2 + b c 2 + c 2 d + a d 2 + b d 2 + c d 2 ) 3(a^2b+a^2c+a^2d+ab^2+b^2c+b^2d+ac^2+bc^2+c^2d+ad^2+bd^2+cd^2)

However, that still seems like a pain to compute. Luckily, we can factor this further by seperating the terms with a 2 a^2 , the terms with b 2 b^2 , and so on, to obtain

3 ( a 2 ( b + c + d ) + b 2 ( a + c + d ) + c 2 ( a + b + d ) + d 2 ( a + b + c ) 3( a^2(b+c+d) + b^2(a+c+d) + c^2(a+b+d) + d^2(a+b+c)

Let's take a look at our first term,

a 2 ( b + c + d ) a^2(b+c+d)

Since we know that

a + b + c + d = 0 a+b+c+d = 0

b + c + d b +c+d is simply

a + b + c + d a a+b+c+d-a

Or

0 a = a 0-a = -a

So the first term is just

a 2 a = a 3 a^2 \cdot -a = -a^3

Similarly, our second term, b 2 ( a + c + d ) b^2(a+c+d) , is just b 3 -b^3 , and so on.

So, our middle part can be simplified to

3 ( a 3 b 3 c 3 d 3 ) 3(-a^3-b^3-c^3-d^3) which is just

3 ( a 3 + b 3 + c 3 + d 3 ) -3(a^3+b^3+c^3+d^3)

And since we know the value of a 3 + b 3 + c 3 + d 3 a^3+b^3+c^3+d^3 , it can be simplified further to 3 × 1983 -3 \times 1983

We have simplified our long nasty expression into

1983 + 3 × 1983 + 6 ( a b c + a c d + a b d + b c d ) 1983 + -3\times 1983 + 6(abc+acd+abd+bcd)

Where a b c + a c d + a b d + b c d abc+acd+abd+bcd is what we want to compute. This can be further simplified to

2 × 1983 + 6 ( a b c + a c d + a b d + b c d ) -2\times 1983 + 6(abc+acd+abd+bcd)

However, notice that, since a + b + c + d = 0 a+b+c+d = 0 , ( a + b + c + d ) 3 = 0 3 = 0 (a+b+c+d)^3 = 0^3 = 0

So we have the equation

2 × 1983 + a b c + a c d + a b d + b c d = 0 -2\times 1983 + abc+acd+abd+bcd = 0

6 ( a b c + a c d + a b d + b c d ) = 2 × 1983 \implies 6(abc+acd+abd+bcd) = 2\times 1983

a b c + a c d + a b d + b c d = 2 × 1983 6 = 1983 3 = 661 \implies abc + acd + abd+bcd = \frac{2\times 1983}{6} = \frac{1983}{3} = \boxed{661} which is our desired answer. \blacksquare

You should be commended for not being afraid to tackle ( a + b + c + d ) 3 . (a+b+c+d)^3. Most people would shy away from this as something that will be too complicated or too tedious. While this is not the most elegant or short solution, it is logical and easier than one might expect.

Alexander Borisov - 7 years, 6 months ago

Oops my solution is probably too long - the procedure isn't actually that long though.

William Cui - 7 years, 6 months ago
Jatin Yadav
Dec 2, 2013

( a + b ) = ( c + d ) (a+b) = -(c+d)

a 3 + b 3 + c 3 + d 3 = 1983 a^3 + b^3 + c^3 + d^3 = 1983

( a + b ) ( ( a + b ) 2 3 a b ) + ( c + d ) ( ( c + d ) 2 c d ) = 1983 \Rightarrow (a+b)((a+b)^2 - 3ab) + (c+d)((c+d)^2 - cd) = 1983

( c + d ) ( ( c + d ) 2 3 a b ) + ( c + d ) ( ( c + d ) 2 c d ) = 1983 \Rightarrow -(c+d)((c+d)^2 - 3ab) + (c+d)((c+d)^2 - cd) = 1983

3 ( c + d ) ( a b c d ) = 1983 ( c + d ) ( a b c d ) = 661 \Rightarrow 3(c+d)(ab-cd) = 1983 \Rightarrow (c+d)(ab-cd)=661

1 a + 1 b + 1 c + 1 d \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}

= a b ( c + d ) + b c ( a + b ) a b c d \frac{ab(c+d) + bc(a+b)}{abcd}

= ( c + d ) ( a b c d ) a b c d = 661 \frac{(c+d)(ab-cd)}{abcd} = \boxed{661}

Sujoy Roy
Dec 1, 2013

As a + b + c + d = 0 a + b = ( c + d ) . a+b+c+d=0 \Rightarrow a+b=-(c+d).

As a 3 + b 3 = ( a + b ) 3 3 a b ( a + b ) = a^3+b^3=(a+b)^3-3ab(a+b)= ( c + d ) 3 + 3 a b ( c + d ) = c 3 d 3 3 c d ( c + d ) + 3 a b ( c + d ) -(c+d)^3+3ab(c+d)=-c^3-d^3-3cd(c+d)+3ab(c+d) a 3 + b 3 + c 3 + d 3 = 3 ( c + d ) ( a b c d ) \Rightarrow a^3+b^3+c^3+d^3=3(c+d)(ab-cd) ( c + d ) ( a b c d ) = 1983 3 = 661. \Rightarrow (c+d)(ab-cd)=\frac{1983}{3}=661.

Now, 1 a + 1 b + 1 c + 1 d = a + b a b + c + d c d = c + d a b + c + d c d = ( c + d ) ( a b c d ) a b c d = ( c + d ) ( a b c d ) = 661 \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=\frac{a+b}{ab}+\frac{c+d}{cd} = -\frac{c+d}{ab}+\frac{c+d}{cd}=\frac{(c+d)(ab-cd)}{abcd}=(c+d)(ab-cd)=661 So, Answer is 661 \boxed{661}

Ajay Maity
Dec 30, 2013

Remember these and observe the pattern.

( a + b ) 3 = a 3 + b 3 + 3 a 2 b + 3 b 2 a (a + b)^{3} = a^{3} + b^{3} + 3a^{2}b + 3b^{2}a

( a + b + c ) 3 = a 3 + b 3 + c 3 + 3 a 2 b + 3 a 2 c + 3 b 2 a + 3 b 2 c + 3 c 2 a + 3 c 2 b + 6 a b c = a 3 + b 3 + c 3 + 3 a 2 ( b + c ) + 3 b 2 ( c + a ) + 3 c 2 ( a + b ) + 6 a b c (a + b + c)^{3} = a^{3} + b^{3} + c^{3} + 3a^{2}b + 3a^{2}c + 3b^{2}a + 3b^{2}c + 3c^{2}a + 3c^{2}b + 6abc = a^{3} + b^{3} + c^{3} + 3a^{2}(b + c) + 3b^{2}(c + a) + 3c^{2}(a + b) + 6abc

( a + b + c + d ) 3 = a 3 + b 3 + c 3 + d 3 + 3 a 2 ( b + c + d ) + 3 b 2 ( c + d + a ) + 3 c 2 ( d + a + b ) + 3 d 2 ( a + b + c ) + 6 ( a b c + b c d + c d a + d a b ) (a + b + c + d)^{3} = a^{3} + b^{3} + c^{3} + d^{3} + 3a^{2}(b + c + d) + 3b^{2}(c + d + a) + 3c^{2}(d + a + b) + 3d^{2}(a + b + c) + 6(abc + bcd + cda + dab)

Substitute the values,

0 = 1983 + 3 a 2 ( a ) + 3 b 2 ( b ) + 3 c 2 ( c ) + 3 d 2 ( d ) + 6 ( a b c + b c d + c d a + d a b ) 0 = 1983 + 3a^{2}(-a) + 3b^{2}(-b) + 3c^{2}(-c) + 3d^{2}(-d) + 6(abc + bcd + cda + dab)

0 = 1983 3 a 3 3 b 3 3 c 3 3 d 3 + 6 ( a b c + b c d + c d a + d a b ) 0 = 1983 - 3a^{3} - 3b^{3} - 3c^{3} - 3d^{3} + 6(abc + bcd + cda + dab)

0 = 1983 3 ( a 3 + b 3 + c 3 + d 3 ) + 6 ( a b c + b c d + c d a + d a b ) 0 = 1983 - 3(a^{3} + b^{3} + c^{3} + d^{3}) + 6(abc + bcd + cda + dab)

0 = 1983 3 ( 1983 ) + 6 ( a b c + b c d + c d a + d a b ) 0 = 1983 - 3(1983) + 6(abc + bcd + cda + dab)

a b c + b c d + c d a + d a b = 661 abc + bcd + cda + dab = 661 .......... (i)

We need to find 1 a + 1 b + 1 c + 1 d \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}

= a b c + b c d + c d a + d a b a b c d = \frac{abc + bcd + cda + dab}{abcd}

= 661 = 661

That's the answer!

Similarly,

( a + b + c + d + e ) 3 = a 3 + b 3 + c 3 + d 3 + e 3 + 3 a 2 ( b + c + d + e ) + 3 b 2 ( c + d + e + a ) + 3 c 2 ( d + e + a + b ) + 3 d 2 ( e + a + b + c ) + 3 e 2 ( a + b + c + d ) + 6 ( a b c + b c d + c d e + d e a + e a b ) (a + b + c + d + e)^3 = a^{3} + b^{3} + c^{3} + d^{3} + e^{3} + 3a^{2}(b + c + d + e) + 3b^{2}(c + d + e + a) + 3c^{2}(d + e + a + b) + 3d^{2}(e + a + b + c) + 3e^{2}(a + b + c + d) + 6(abc + bcd + cde + dea + eab)

Ajay Maity - 7 years, 5 months ago
Pranav Arora
Dec 3, 2013

Rewrite the first equation as follows:

a + b = ( c + d ) \displaystyle a+b=-(c+d)

Cube both the sides now to get:

a 3 + b 3 + 3 a b ( a + b ) = c 3 d 3 3 c d ( c + d ) \displaystyle a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)

a 3 + b 3 + c 3 + d 3 = 3 ( a b ( a + b ) + c d ( c + d ) \displaystyle \Rightarrow a^3+b^3+c^3+d^3=-3(ab(a+b)+cd(c+d)

Replace a + b a+b with ( c + d ) -(c+d) and c + d c+d with ( a + b ) -(a+b) .

a 3 + b 3 + c 3 + d 3 = 3 ( a b ( c + d ) + c d ( a + b ) ) = 3 ( a b c + a b d + c d a + c d b ) \displaystyle \Rightarrow a^3+b^3+c^3+d^3=3(ab(c+d)+cd(a+b))=3(abc+abd+cda+cdb)

From the second equation, we have a b c = 1 / d , a b d = 1 / c , c d a = 1 / b abc=1/d, \,abd=1/c, \, cda=1/b and c d b = 1 / a cdb=1/a .

Hence,

1 a + 1 b + 1 c + 1 d = 1983 3 = 661 \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=\frac{1983}{3}=\fbox{661}

Roach Sanderson
Dec 2, 2013

a + b + c + d = 0 a+b+c+d=0

a + b = ( c + d ) \Longrightarrow a+b=-(c+d)

( a + b ) 3 = ( ( c + d ) ) 3 \Longrightarrow (a+b)^3 = \left(-(c+d)\right)^3

a 3 + b 3 + 3 a b ( a + b ) = ( c 3 + d 3 + 3 c d ( c + d ) ) \Longrightarrow a^3+b^3+3ab(a+b)=-\left(c^3+d^3+3cd(c+d)\right)

( a 3 + b 3 + c 3 + d 3 ) + 3 ( a b ( a + b ) + c d ( c + d ) ) = 0 \Longrightarrow (a^3+b^3+c^3+d^3)+3\left(ab(a+b)+cd(c+d)\right)=0

a b ( a + b ) + c d ( c + d ) = ( a 3 + b 3 + c 3 + d 3 ) 3 \Longrightarrow ab(a+b)+cd(c+d) = -\dfrac{(a^3+b^3+c^3+d^3)}{3}

a b ( a + b ) + c d ( c + d ) = 1983 3 = 661 ( ) \Longrightarrow ab(a+b)+cd(c+d) = -\dfrac{1983}{3}=-661~~~ \cdot\cdot\cdot ~(*)

Note that a + b = ( c + d ) c + d = ( a + b ) a+b=-(c+d)\Longrightarrow c+d=-(a+b) ...

And, a b c d = 1 a b = 1 c d c d = 1 a b ~abcd=1 \Longrightarrow ab=\dfrac{1}{cd} \Longrightarrow cd = \dfrac{1}{ab} ...

Substituting these in ( ) (*) , we get...

a b ( a + b ) + c d ( c + d ) = 661 \Longrightarrow ab(a+b)+cd(c+d) =-661

c + d c d + c d ( c + d ) = 661 \Longrightarrow -\dfrac{c+d}{cd}+cd(c+d) =-661

c + d c d = 1 c + 1 d = c d ( c + d ) + 661 ( ) \Longrightarrow \dfrac{c+d}{cd} = \dfrac{1}{c} + \dfrac{1}{d}=cd(c+d)+661~~~ \cdot\cdot\cdot ~ (**)

Similarly, 1 a + 1 b = a b ( a + b ) + 661 ( ) \dfrac{1}{a} + \dfrac{1}{b}=ab(a+b)+661~~~ \cdot\cdot\cdot ~ (***)

Summing up ( ) (**) and ( ) (***) , we get the following...

1 a + 1 b + 1 c + 1 d = a b ( a + b ) + 661 + c d ( c + d ) + 661 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d} =ab(a+b)+661+cd(c+d)+661

Note that...

a b ( a + b ) + 661 + c d ( c + d ) + 661 ab(a+b)+661+cd(c+d)+661

= 661 + 661 + ( a b ( a + b ) + c d ( c + d ) ) = 661+661+\left(ab(a+b)+cd(c+d)\right)

= 661 + 661 661 = 661 = 661+661-661=661

Therefore, 1 a + 1 b + 1 c + 1 d = 661 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d} = \fbox{661}

Daniel Liu
Dec 1, 2013

First let's simplify 1 a + 1 b + 1 c + 1 d \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d} to get a b c + a b d + a c d + b c d abc+abd+acd+bcd .

Now let us expand ( a + b + c + d ) 3 = 0 (a+b+c+d)^3=0 to see what happens: a 3 + b 3 + c 3 + d 3 + 3 ( a 2 b + a 2 c + a 2 d + b 2 a + b 2 c + b 2 d + c 2 a + c 2 b + c 2 d + d 2 a + d 2 b + d 2 c ) + 6 ( a b c + a b d + a c d + b c d ) a^3+b^3+c^3+d^3+3(a^2b+a^2c+a^2d+b^2a+b^2c+b^2d+c^2a+c^2b+c^2d+d^2a+d^2b+d^2c)+6(abc+abd+acd+bcd) .

Note that since b + c + d = a b+c+d=-a , a + c + d = b a+c+d=-b , a + b + d = c a+b+d=-c and b + c + d = a b+c+d=-a we can simplify the previous expression to a 3 + b 3 + c 3 + d 3 3 ( a 3 + b 3 + c 3 + d 3 ) + 6 ( a b c + a b d + a c d + b c d ) a^3+b^3+c^3+d^3-3(a^3+b^3+c^3+d^3)+6(abc+abd+acd+bcd) which equals 6 ( a b c + a b d + a c d + b c d ) 2 ( a 3 + b 3 + c 3 + d 3 ) = 0 6(abc+abd+acd+bcd)-2(a^3+b^3+c^3+d^3)=0 .

We now substitute a 3 + b 3 + c 3 + d 3 = 1983 a^3+b^3+c^3+d^3=1983 to solve for a b c + a b d + a c d + b c d abc+abd+acd+bcd : 6 ( a b c + a b d + a c d + b c d ) 2 ( 1983 ) = 0 a b c + a b d + a c d + b c d = 661 6(abc+abd+acd+bcd)-2(1983)=0\implies abc+abd+acd+bcd=\boxed{661}

Anh Tuong Nguyen
Dec 3, 2013

We have c y c 1 a = c y c ( a b c + a b d ) \displaystyle \sum_{cyc}\frac{1}{a}=\displaystyle \sum_{cyc}(abc+abd) since a b c d = 1 abcd=1

0 = ( a + b + c + d ) 3 = c y c a 3 + 3 ! 2 ! c y c a 2 ( b + c + d ) + ( 3 ! ) c y c ( a b c + a b d ) 0=(a+b+c+d)^3=\displaystyle \sum_{cyc} a^3+ \frac{3!}{2!}\displaystyle \sum_{cyc} a^2(b+c+d) + (3!)\displaystyle \sum_{cyc} (abc+abd)

Using b + c + d = a b+c+d=-a , we have

0 = c y c a 3 3 c y c a 3 + 6 c y c ( a b c + a b d ) 0=\displaystyle \sum_{cyc} a^3 - 3 \displaystyle \sum_{cyc} a^3 + 6\displaystyle \sum_{cyc} (abc+abd)

Hence c y c 1 a = 1983 3 = 661 \displaystyle \sum_{cyc} \frac{1}{a}=\frac{1983}{3}=661

Gypsy Singer
Dec 2, 2013

Given,

a + b + c + d = 0 a+b+c+d=0

multiply both side of the equation with a b ab we get,

a 2 b + a b 2 + a b c + a b d = 0 1 c + 1 d + a 2 b + a b 2 = 0 a^{2}b+ab^{2}+abc+abd=0\Rightarrow\frac{1}{c}+\frac{1}{d}+a^{2}b+ab^{2}=0 ..............(i)

[since, a b c d = 1 abcd=1 ]

similarly by multiplying ac,ad,bc,bd,cd we get,

1 b + 1 d + a 2 c + a c 2 = 0 \frac{1}{b}+\frac{1}{d}+a^{2}c+ac^{2}=0 ..............(ii)

1 b + 1 c + a 2 d + a d 2 = 0 \frac{1}{b}+\frac{1}{c}+a^{2}d+ad^{2}=0 ..............(iii)

1 a + 1 d + b 2 c + b c 2 = 0 \frac{1}{a}+\frac{1}{d}+b^{2}c+bc^{2}=0 ..............(iv)

1 a + 1 c + b 2 d + b d 2 = 0 \frac{1}{a}+\frac{1}{c}+b^{2}d+bd^{2}=0 ..............(v)

1 a + 1 b + c 2 d + c d 2 = 0 \frac{1}{a}+\frac{1}{b}+c^{2}d+cd^{2}=0 ..............(vi)

adding this equations (i) to (vi),

3 ( 1 a + 1 b + 1 c + 1 d ) + a 2 ( b + c + d ) + b 2 ( a + c + d ) + c 2 ( a + b + d ) + d 2 ( a + b + c ) = 0 3(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})+a^{2}(b+c+d)+b^{2}(a+c+d)+c^{2}(a+b+d)+d^{2}(a+b+c)=0

3 ( 1 a + 1 b + 1 c + 1 d ) + a 2 ( a ) + b 2 ( b ) + c 2 ( c ) + d 2 ( d ) = 0 \Rightarrow3(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})+a^{2}(-a)+b^{2}(-b)+c^{2}(-c)+d^{2}(-d)=0

3 ( 1 a + 1 b + 1 c + 1 d ) ( a 3 + b 3 + c 3 + d 3 ) = 0 \Rightarrow3(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})-(a^{3}+b^{3}+c^{3}+d^{3})=0

3 ( 1 a + 1 b + 1 c + 1 d ) = ( a 3 + b 3 + c 3 + d 3 ) \Rightarrow3(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})=(a^{3}+b^{3}+c^{3}+d^{3})

( 1 a + 1 b + 1 c + 1 d ) = 1983 3 = 661 \Rightarrow(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})=\frac{1983}{3}=661

hence,

1 a + 1 b + 1 c + 1 d = 661 \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=661

Shubham Kumar
Dec 2, 2013

Let E represents the summation.

Given, E(a) = 0, ............................(i)

abcd =1, ........................(ii)

E(a^3) = 1983. ......................(iii)

If we solve the sum of reciprocals, we have to find E(abc) = ?

Now,

(a + b + c + d)^3 = E(a^3) + 3E((a^2) * (b + c + d)) + 6E(abc) ................(iv)

Now, putting values from (i),(ii),(iii) into (iv), we get

E(a^3) - 3E(a^3) + 6E(abc) = 0

3E(abc) = E(a^3)

E(abc) = 1983/3 = 661 (Ans)

Joel Tan
Jan 9, 2014

Let a + b = x a+b=x , a b = y ab=y . Then c + d = x c+d=-x and c d = 1 y cd=\frac{1}{y} .

What we want to find can be written as a + b a b + c + d c d = x y x y \frac{a+b}{ab}+\frac{c+d}{cd}=\frac{x}{y}-xy after the substituting the numerators and denominators.

However, note that a 3 + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 3 a b ( a + b ) = x 3 3 x y a^{3}+b^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}-3ab(a+b)=x^{3}-3xy . Similarly, c 3 + d 3 = x 3 + 3 x y c^{3}+d^{3}=-x^{3}+\frac{3x}{y} . Adding both of them, we find that the sum is x 3 x 3 3 x y + 3 x y = 3 ( x y x y ) = 3 ( x y x y ) x^{3}-x^{3}-3xy+\frac{3x}{y}=-3(xy-\frac{x}{y})=3(\frac{x}{y}-xy) , which is 3 times what we want to find! Thus the answer is just 1983 3 = 661 \frac{1983}{3}=661 .

Jordi Bosch
Dec 24, 2013

1 a + 1 b + 1 c + 1 d = a b c + a b d + a c d + b c d a b c d = a b c + a b d + a c d + b c d \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} = \frac{abc+abd+acd+bcd}{abcd} = abc+abd+acd+bcd . Since a b c d = 1 abcd = 1

Notice the following identity. It's motiavtion comes from:

( a 3 + b 3 + c 3 3 a b c ) = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c a c ) (a^3 + b^3 + c^3 - 3abc) = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)

( a 3 + b 3 + c 3 + d 3 ) 3 ( a b c + a b d + a c d + b c d ) = ( a + b + c + d ) ( a 2 + b 2 + c 2 + d 2 a b a c a d b c b d c d ) (a^{3}+b^{3}+c^{3}+d^{3}) - 3 (abc+abd+acd+bcd) = (a + b + c + d)(a^{2}+b^{2}+c^{2}+d^{2}-ab-ac-ad-bc-bd-cd)

The RHS is 0 0 since a + b + c + d = 0 a + b + c + d = 0

a 3 + b 3 + c 3 + d 3 3 ( a b c + a b d + a c d + b c d ) = 0 a^{3}+b^{3}+c^{3}+d^{3} - 3 (abc+abd+acd+bcd) = 0

1983 3 ( a b c + a b d + a c d + b c d ) = 0 a b c + a b d + a c d + b c d = 661 1983 - 3 (abc+abd+acd+bcd) = 0 \Rightarrow abc + abd + acd + bcd = \boxed{661}

Israel Smith
Dec 21, 2013

Very very beatiful problem!!! :D (a+b+c+d)³=0 -> (a+b) = x and (c+d) = y. -> (x+y)³=0 -> x³+3x²y+3xy²+y³ = 0 -> x³+y³+3xy(x+y) = 0 Turn to x=a+b and y=c+d. (a+b)³+(c+d)³+3(a+b)(c+d)(a+b+c+d)=0. By a+b+c+d=0 identity: (a+b)³+(c+d)³=0 (a³+3ab(a+b)+b³)+(c³+3cd(c+d)+d³)=0 By a³+b³+c³+d³=1983 identity: 3ab(a+b)+3cd(c+d)+1983=0 Changing (a+b) = - (c+d) and (c+d)=-(a+b) by a+b+c+d=0 identity:

-3ab(c+d) - 3cd(a+b) = -1983 -3abc-3abd - 3acd - 3bcd = -1983 3abc+3abd+3acd+3bcd=1983 abc+abd+acd+bcd=661 Divides all by abcd. 1/a+1/b+1/c+1/d=661

Sorry for bad english.

your english is very nice

swapnil rajawat - 7 years, 5 months ago

(Key techniques: Substitution, Polynomial expansion.)

We shall refer to the three given equations, in order, simply as ( 1 ) , ( 2 ) , (1), (2), and ( 3 ) (3) , respectively.

From ( 2 ) (2) , we can be sure that none of the variables is equal to zero. Hence, we can divide by any of the four variables (which we might need later).

Cubing ( 1 ) (1) , and rearranging terms, we have:

a 3 + b 3 + c 3 + d 3 + 3 a 2 b + 3 a 2 c + 3 a 2 d + 3 a b 2 + 3 b 2 c + 3 b 2 d + 3 a c 2 + 3 b c 2 + 3 c 2 d + 3 a d 2 + 3 b d 2 + 3 c d 2 + 6 a b c + 6 a b d + 6 a c d + 6 b c d = 0 ( A ) a^3 + b^3 + c^3 + d^3 + 3a^2b + 3a^2c + 3a^2d + 3ab^2 + 3b^2c + 3b^2d + 3ac^2 + 3bc^2 + 3c^2d + 3ad^2 + 3bd^2 + 3cd^2 + 6abc + 6abd + 6acd + 6bcd = 0 (A)

Quite long, isn't it? But we can let ( 2 ) (2) and ( 3 ) (3) enter the picture: from ( 2 ) (2) , the last four terms can be rewritten, with terms in reverse order, as 6 ( 1 a + 1 b + 1 c + 1 d ) 6 (\frac {1} {a} + \frac {1} {b} + \frac {1} {c} + \frac {1} {d}) . And from ( 3 ) (3) , the first four terms can be replaced with 1983. Hence, equation A A , with the factor 3 3 taken out of the terms after 1983 1983 , becomes:

1983 + 3 ( a 2 b + a 2 c + a 2 d + a b 2 + b 2 c + b 2 d + a c 2 + b c 2 + c 2 d + a d 2 + b d 2 + c d 2 ) + 6 ( 1 a + 1 b + 1 c + 1 d ) = 0 ( B ) 1983 + 3(a^2b + a^2c + a^2d + ab^2 + b^2c + b^2d + ac^2 + bc^2 + c^2d + ad^2 + bd^2 + cd^2) + 6 (\frac {1} {a} + \frac {1} {b} + \frac {1} {c} + \frac {1} {d}) = 0 (B)

Now, we shall take note of the way by which the terms after 1983 are arranged. Let's take a look, for instance, on the first three terms: a 2 b + a 2 c + a 2 d a^2b + a^2c + a^2d . We can factor out a 2 a^2 , and the remaining three terms may look somewhat familiar: from ( 1 ) (1) , it is precisely a -a . Hence, the first three terms can be reduced to just a 3 -a^3 . A similar process can be done for the next succeeding groups of three terms, thus condensing ( B ) (B) into a prettier-looking equation:

1983 + 3 ( a 3 + ( b 3 ) + ( c 3 ) + ( d ) 3 ) + 6 ( 1 a + 1 b + 1 c + 1 d ) = 0 ( C ) 1983 + 3(-a^3 + (-b^3) + (-c^3) + (-d)^3) + 6(\frac {1} {a} + \frac {1} {b} + \frac {1} {c} + \frac {1} {d}) = 0 (C)

Using equation ( 3 ) (3) again, we can reduce ( C ) (C) to just 1983 + 3 ( 1983 ) + 6 ( 1 a + 1 b + 1 c + 1 d ) = 0 ( D ) 1983 + 3(-1983) + 6(\frac {1} {a} + \frac {1} {b} + \frac {1} {c} + \frac {1} {d}) = 0 (D) . Transposition and division by 6 will give us the final answer:

1 a + 1 b + 1 c + 1 d = 661 \frac {1} {a} + \frac {1} {b} + \frac {1} {c} + \frac {1} {d} = \boxed{661}

William Isoroku
Mar 15, 2015

Adding up the fraction gives us c d ( a + b ) + a b ( c + d ) a b c d = c d ( a + b ) + a b ( c + d ) \frac{cd(a+b)+ab(c+d)}{abcd}=\boxed{cd(a+b)+ab(c+d)}

Use the identity x 3 + y 3 = ( x + y ) 3 3 x y ( x + y ) x^3+y^3=(x+y)^3-3xy(x+y)

So a 3 + b 3 + c 3 + d 3 = ( a + b ) 3 3 a b ( a + b ) + ( c + d ) 3 3 c d ( c + d ) = 1983 a^3+b^3+c^3+d^3=(a+b)^3-3ab(a+b)+(c+d)^3-3cd(c+d)=1983

And since c + d = a b c+d=-a-b , that means that when ( a + b ) 3 (a+b)^3 and ( c + d ) 3 (c+d)^3 are factored, they'll just cancel each other out to 0 0

Therefore the above long expression and be simplified to 3 a b ( a + b ) 3 c d ( c + d ) = 1983 -3ab(a+b)-3cd(c+d)=1983 and so a b ( a + b ) + c d ( c + d ) = 661 ab(a+b)+cd(c+d)=-661

Keep in mind that

a + b = c d a+b=-c-d

c + d = a b c+d=-a-b

Multiply by 1 -1 : a b ( a b ) + c d ( c d ) = a b ( c + d ) + c d ( a + b ) = 661 ab(-a-b)+cd(-c-d)=ab(c+d)+cd(a+b)=\boxed{661}

Arup Roy
Mar 13, 2015

c+d=-(a+b) cd=1/ab the given expression can be thus written as follow (a+b)/ab-ab(a+b)... ... and the cubic expression can thus be written as follow

(a+b)^3-3ab(a+b)-(a+b)^3+3(a+b)/ab=1983 or, (a+b)/ab-ab(a+b)=661.

Gamal Sultan
Mar 11, 2015

1/a + 1/b + 1/c + 1/d = bcd + acd + abd + abc ................................... (1)

(a+b)³ = - (c+d)³

a³ + b³ + c³ + d³ = -3 [ ab (a + b) + cd (c + d) ]

but a + b = - (c + d)

Then

a³ + b³ + c³ + d³ = 3 [ ab (c + d) + cd (a + b) ]

a³ + b³ + c³ + d³ = 3 [bcd + acd + abd + abc ]

Then

bcd + acd + abd + abc = 1983/3 = 661 ..............................................(2)

From (1), (2)

1/a + 1/b + 1/c + 1/d = 661

Avinash Singh
Mar 5, 2015

we know that if x+y+z=0 then x^3+y^3+z^3=3xyz

so here we go ...let x=a, y=b , z=c+d by putting the identy we get

a^3+b^3+c^3+d^3+3cd(c+d)=3ab(c+d) 1983-3cd(a+b)=3ab(c+d) 1983=3(acd+bcd+abc+abd) 661=acd+bcd+abc+abd by deviding and multiplying with "abcd" we will get the result .and remember abcd=1(given). 661=1/a+1/b+1/c+1/d

Dheeraj Agarwal
Jan 10, 2015

can be solved in just 4 lines, use newton sums and assume the equation .

Afreen Sheikh
Jan 4, 2015

on performing addition, we get

b c d + a c d + a b d + a b c a b c d \frac{bcd+acd+abd+abc}{abcd}

as abcd=1 we have bcd+acd+abd+acd let it be x

and from ( a + b + c + d ) 3 (a+b+c+d)^{3} formula we get

a 3 + b 3 + c 3 + d 3 + 6 ( x ) 3 ( a 3 + b 3 + c 3 + d 3 ) = 0 a^{3}+b^{3}+c^{3}+d^{3}+6(x) -3(a^{3}+b^{3}+c^{3}+d^{3})=0

1983-3(1983)+6x=0

x=661

Hải Quỳnh
Mar 1, 2014

a+b+c+d =0 => a+b = -(c+d) => a^3 + b^3 + 3ab(a+b) = -c^3 - d^3 - 3cd( c+d ) => a^3 + b^3 + c^3 + d^3 = 3( c+d )( ab - cd) => (c+d)(ab - cd) = 661 1/a + 1/b + 1/c + 1/d = bcd + acd + abd +abc = cd( a+b ) +ab( c+d ) =(c+d)(ab - cd) =661

Sayan Chaudhuri
Dec 8, 2013

see that (a+b+c+d)^3=a^3+b^3+c^3+d^3+3a^2(b+c+d)+3b^2(c+d+a)+3c^2(a+b+d)+3d^2(a+b+c)+6(abc+bcd+cda+bad) =(-2) (a^3+b^3+c^3+d^3)+6(1/a+1/b+1/c+1/d) =>1/a+1/b+1/c+1/d=2 1983/6=661

Pebrudal Zanu
Dec 4, 2013

( a + b + c + d ) 3 = s y m a 3 + 3 s y m a b 2 + 6 s y m \displaystyle (a+b+c+d)^3=\sum_{sym} a^3+3 \sum_{sym}ab^2 +6\sum_{sym}

from a + b + c + d a+b+c+d =0

( a + b ) 3 = ( c + d ) 3 (a+b)^3=-(c+d)^3 ,

a 3 + b 3 + c 3 + d 3 = ( 3 a 2 b + 3 b 2 a + 3 c 2 d + 3 c d 2 ) a^3+b^3+c^3+d^3=-(3a^2b+3b^2a+3c^2d+3cd^2)

Use other combine we get

a 3 + b 3 + c 3 + d 3 = s y m a b 2 \displaystyle a^3+b^3+c^3+d^3=-\sum_{sym}ab^2

So,

a 3 + b 3 + c 3 + d 3 + 3 s y m a b 2 + 6 s y m a b c = 0 \displaystyle a^3+b^3+c^3+d^3+3 \sum_{sym} ab^2+6 \sum_{sym} abc=0

1983 3.1983 + 6 s y m a b c = 0 \displaystyle 1983-3.1983+6\sum_{sym} abc=0

6 s y m a b c = 2.1983 = 3966 \displaystyle 6 \sum_{sym} abc =2.1983=3966

s y m a b c = 661 \displaystyle \sum_{sym} abc=661

s y m a b c a b c d = s y m 1 a = 661 \displaystyle \frac{\sum_{sym} abc}{abcd}=\sum_{sym} \frac {1}{a}=661

So, the answer is 661

I am sorry forget for first line 6 s y m a b c \sum_{sym} abc

pebrudal zanu - 7 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...