Sum of roots

Algebra Level 4

Find the sum of the roots of x x satisfying 47 2 x 4 + 35 + 2 x 4 = 4. \sqrt[4]{47-2x}+\sqrt[4]{35+2x}=4.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Dec 30, 2015

The condition is 35 2 x 47 2 \frac{-35}{2}\leq x \leq\frac{47}{2} Let 47 2 x 4 = a \sqrt[4]{47-2x}=a 35 + 2 x 4 = b \sqrt[4]{35+2x}=b Then we get this system of equations { a 4 + b 4 = 82 a + b = 4 \begin{cases}a^4+b^4=82 \\ a+b=4\end{cases} { a 4 + ( 4 a ) 4 = 82 b = 4 a \Leftrightarrow\begin{cases}a^4+(4-a)^4=82 \\ b=4-a\end{cases} { a 4 1 + ( 4 a ) 4 81 = 0 b = 4 a \Leftrightarrow\begin{cases}a^4-1+(4-a)^4-81=0 \\ b=4-a\end{cases} { ( a 2 1 ) ( a 2 + 1 ) + [ ( 4 a ) 2 9 ] [ ( 4 a ) 2 + 9 ] = 0 b = 4 a \Leftrightarrow\begin{cases}(a^2-1)(a^2+1)+[(4-a)^2-9][(4-a)^2+9]=0 \\ b=4-a\end{cases} { ( a 1 ) ( a + 1 ) ( a 2 + 1 ) ( a 1 ) ( 7 a ) [ ( 4 a ) 2 + 9 ] = 0 b = 4 a \Leftrightarrow\begin{cases}(a-1)(a+1)(a^2+1)-(a-1)(7-a)[(4-a)^2+9]=0 \\ b=4-a\end{cases} { ( a 1 ) [ a 3 + a 2 + a + 1 + ( a 7 ) ( a 2 8 a + 25 ) ] = 0 b = 4 a \Leftrightarrow\begin{cases}(a-1)[a^3+a^2+a+1+(a-7)(a^2 -8a+25)]=0\\b=4-a\end{cases} { ( a 1 ) ( 2 a 3 14 a 2 + 82 a 174 ) = 0 b = 4 a \Leftrightarrow\begin{cases}(a-1)(2a^3-14a^2+82a-174)=0\\b=4-a\end{cases} { ( a 1 ) ( a 3 ) ( 2 a 2 8 a + 58 ) = 0 b = 4 a \Leftrightarrow\begin{cases}(a-1)(a-3)(2a^2-8a+58)=0\\b=4-a\end{cases} We get ( a ; b ) = ( 1 ; 3 ) ; ( 3 ; 1 ) (a;b)={(1;3);(3;1)} ( a ; b ) = ( 1 ; 3 ) x = 23 (a;b)=(1;3)\Leftrightarrow x=23 ( a ; b ) = ( 3 ; 1 ) x = 17 (a;b)=(3;1)\Leftrightarrow x=-17 23 17 = 6 \Rightarrow 23-17=6 Tell me if there are any other solutions

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...