Sum of Roots

Algebra Level 3

2 x 2 4 x + 1 = 0 \large 2x^{2} - 4x + 1 = 0

If α \alpha and β \beta are the roots of the equation above, then what is the value of 1 α + 2 β + 1 β + 2 α \frac{1}{ \alpha + 2\beta } + \frac{1}{ \beta + 2\alpha } ?

6 5 \frac{6}{5} 12 13 \frac{12}{13} 12 17 \frac{12}{17} 8 15 \frac{8}{15}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using Vieta's formula we know that:

α + β = 2 α β = 1 2 \alpha+\beta=2 \\ \alpha \beta=\dfrac{1}{2}

Now, rewrite the expression:

1 α + 2 β + 1 β + 2 α = 3 ( α + β ) 5 α β + 2 ( α 2 + β 2 ) \dfrac{1}{\alpha+2\beta}+\dfrac{1}{\beta+2\alpha}=\dfrac{3(\alpha+\beta)}{5\alpha\beta+2(\alpha^2+\beta^2)}

And using ( α + β ) 2 = α 2 + 2 α β + β 2 (\alpha+\beta)^2=\alpha^2+2\alpha\beta+\beta^2 , then:

3 ( α + β ) α β + 2 ( α + β ) 2 \dfrac{3(\alpha+\beta)}{\alpha\beta+2(\alpha+\beta)^2}

Substituting the known values we get:

3 ( 2 ) 1 2 + 2 ( 2 ) 2 = 12 17 \dfrac{3(2)}{\dfrac{1}{2}+2(2)^2}=\boxed{\dfrac{12}{17}}

Very good solution

Sai Ram - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...