Sum of roots reciprocal

Calculus Level 4

If F ( i ) = 1 i F(i) = \dfrac{1}{\sqrt{i}} , then calculate the whole part of:

i = 1 1 , 000 , 000 F ( i ) \large \sum_{i=1}^{1,000,000} F(i)


The answer is 1998.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karim Fawaz
Jan 5, 2017

First of all, let’s find an upper and lower bound for F(i)

1. Lower bound for F(i):

It can easily be shown that: 2 ( i + 1 i ) < F ( i ) 2(\sqrt{i + 1} - \sqrt{i}) < F(i)

Proof:

( i + 1 i ) = ( i + 1 i ) X ( i + 1 + i ) i + 1 + i = (\sqrt{i + 1} - \sqrt{i}) = \frac{(\sqrt{i + 1} - \sqrt{i}) X (\sqrt{i + 1} + \sqrt{i})}{\sqrt{i + 1} + \sqrt{i}} =

1 i + 1 + i \frac{1}{\sqrt{i + 1} + \sqrt{i}} < 1 i + i \frac{1}{\sqrt{i} + \sqrt{i}} = 1 2 i \frac{1}{2 \sqrt{i}}

Therefore :

2 ( i + 1 i ) < F ( i ) . . . ( 1 ) 2(\sqrt{i + 1} - \sqrt{i}) < F(i) ... (1)

2. Upper bound for F(i):

Also, It can easily be shown that: F(i) < 2 ( i i 1 ) 2(\sqrt{i} - \sqrt{i - 1})

Proof:

( i i 1 ) = ( i i 1 ) X ( i + i 1 ) ( i + i 1 ) (\sqrt{i} - \sqrt{i - 1}) = \frac{(\sqrt{i} - \sqrt{i - 1}) X (\sqrt{i} + \sqrt{i - 1})}{(\sqrt{i} + \sqrt{i - 1})} =

1 ( i + i 1 > 1 ( i + i ) ) = 1 2 i \frac{1}{(\sqrt{i} + \sqrt{i - 1}} > \frac{1}{(\sqrt{i} + \sqrt{i}})) = \frac{1}{2\sqrt{i}}

Therefore :

2 ( i i 1 ) > F ( i ) . . . ( 2 ) 2(\sqrt{i} - \sqrt{i - 1}) > F(i) ... (2)

Now we have: i = 1 1 , 000 , 000 F ( i ) = 1 + 0.001 + i = 2 999 , 999 F ( i ) \sum_{i=1}^{1,000,000} F(i) = 1 + 0.001 + \sum_{i=2}^{999,999} F(i) = 1.001 + S1 ... (3) )

W h e r e S 1 = i = 2 999 , 999 F ( i ) Where S1 = \sum_{i=2}^{999,999} F(i)

In order to calculate this total, let’s find the sum of lower and upper bound of it.

Value of lower bound sum = i = 2 999 , 999 2 ( i + 1 i ) = 2 [ ( 3 2 ) + ( 4 3 ) + ( 1000000 999999 ) ] \sum_{i=2}^{999,999} 2(\sqrt{i + 1} - \sqrt{i}) = 2 [(\sqrt{3} - \sqrt{2}) + (\sqrt{4} - \sqrt{3}) + … (\sqrt{1000000} - \sqrt{999999})] = 2 [ ( 1000000 2 ) ] = 2 [ 1000 1.414 ] = 2 [ 998.586 ] = 1997.172 = 2 [(\sqrt{1000000} - \sqrt{2})] = 2 [1000 - 1.414] = 2 [998.586] = 1997.172

Value of upper bound sum = i = 2 999 , 999 2 ( i i 1 ) = 2 [ ( 2 1 ) + ( 3 2 ) + ( 999999 999998 ) ] \sum_{i=2}^{999,999} 2(\sqrt{i} - \sqrt{i - 1}) = 2 [(\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) + … (\sqrt{999999} - \sqrt{999998})] = 2 [ 999999 1 ] = 2 [ 999.999 1 ] = 2 [ 998.999 ] = 1997.998 = 2 [\sqrt{999999} - 1] = 2 [999.999 - 1] = 2 [998.999] = 1997.998

From (1), (2) and (3) we have:

1.001 + 1997.172 < i = 1 1 , 000 , 000 F ( i ) < 1.001 + 1997.998 1.001 + 1997.172 < \sum_{i=1}^{1,000,000} F(i) < 1.001 + 1997.998

1998.173 < i = 1 1 , 000 , 000 F ( i ) < 1998.999 1998.173 < \sum_{i=1}^{1,000,000} F(i) < 1998.999

Therefore, the whole part of: i = 1 1 , 000 , 000 F ( i ) = 1998 \sum_{i=1}^{1,000,000} F(i) = 1998

Answer = 1998 \boxed{1998}

Abhishek Sinha
Feb 2, 2017

Comparing the area under the curve for the decreasing function 1 x \frac{1}{\sqrt{x}} , we have for any positive integral N N 1 + 1 N 1 x d x > i = 1 N 1 N > 1 N + 1 d x x 1+ \int_{1}^{N} \frac{1}{\sqrt{x}} dx > \sum_{i=1}^{N} \frac{1}{\sqrt{N}} > \int_{1}^{N+1} \frac{dx}{\sqrt{x}} This implies, 2 N 1 > i = 1 N 1 N > 2 N + 1 2 2\sqrt{N} -1 > \sum_{i=1}^{N} \frac{1}{\sqrt{N}} > 2 \sqrt{N+1} -2 Putting N = 1 0 6 N=10^6 , we get 1999 > i = 1 N 1 N > 1998 1999 > \sum_{i=1}^{N} \frac{1}{\sqrt{N}} > 1998 This gives us the desired result.

Sir, How did you get the first conclusion ??

Ankith A Das - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...