sum_03 (roots 200 ^{200} )

Algebra Level 4

Let f ( x ) = 1 + x + x 2 + + x 199 f(x) = 1+x+x^2+ \cdots + x^{199} and a 1 , a 2 , a 3 , a 199 a_1, a_2, a_3, \cdots a_{199} be the roots of f ( x ) f(x) . Find k = 1 199 a k 200 \displaystyle \sum_{k=1}^{199} a_k^{200} .


The answer is 199.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Jun 30, 2018

If f ( x ) = 0 f(x) = 0 , then

1 + x + x 2 + + x 199 = 0 Multiply both sides by x x + x 2 + x 3 + + x 200 = 0 Add both sides by 1 1 + x + x 2 + + x 199 + x 200 = 1 Note that 1 + x + x 2 + + x 199 = 0 x 200 = 1 \begin{aligned} 1 + x + x^2 + \cdots + x^{199} & = 0 & \small \color{#3D99F6} \text{Multiply both sides by }x \\ x+x^2 + x^3 + \cdots + x^{200} & = 0 & \small \color{#3D99F6} \text{Add both sides by }1 \\ {\color{#3D99F6}1+ x + x^2 + \cdots + x^{199}} + x^{200} & = 1 & \small \color{#3D99F6} \text{Note that }1 + x + x^2 + \cdots + x^{199} = 0 \\ \implies x^{200} & = 1 \end{aligned}

Since a k a_k , where k = 1 , 2 , 3 , 199 k=1, 2, 3, \cdots 199 , are roots of f ( x ) = 0 f(x) = 0 . Then a k 200 = 1 a_k^{200} = 1 and k = 1 199 a k 200 = k = 1 199 1 = 199 \displaystyle \sum_{k=1}^{199} a_k^{200} = \sum_{k=1}^{199} 1 = \boxed{199} .

Nice solution sir!

Rudrayan Kundu - 2 years, 10 months ago
X X
Jun 30, 2018

1 + x + x 2 + x 3 + . . . + x 198 + x 199 = 0 1+x+x^2+x^3+...+x^{198}+x^{199}=0 ,so ( 1 + x + x 2 + x 3 + . . . + x 198 + x 199 ) ( x 1 ) = 0 = x 200 1 , x 200 = 1 (1+x+x^2+x^3+...+x^{198}+x^{199})(x-1)=0=x^{200}-1,x^{200}=1

So, a 1 200 = a 2 200 = a 3 200 = . . . = a 199 200 = 1 a_1^{200}=a_2^{200}=a_3^{200}=...=a_{199}^{200}=1 .Hence ,the answer is 199.

Pi Han Goh
Jul 3, 2018

By definition, 1 + a m + a m 2 + + a m 199 = 0 1 + a_m + a_m^2 + \cdots + a_m^{199} = 0 for m = 1 , 2 , , 199 m=1,2,\ldots,199 . Then,

k = 1 199 a k 200 = k = 1 199 ( a k 200 1 + 1 ) = k = 1 199 ( a k 1 ) ( 1 + a k + a k 2 + + a k 199 ) 0 + k = 1 199 1 = 0 + 199 = 199 . \sum_{k=1}^{199} a_k^{200} = \sum_{k=1}^{199} (a_k^{200} - 1 + 1)= \sum_{k=1}^{199} (a_k - 1)\cancelto0{(1 + a_k + a_k^2 + \cdots + a_k^{199} )} + \sum_{k=1}^{199} 1 = 0 + 199 = \boxed{199} .

Nicely done :)

Rudrayan Kundu - 2 years, 10 months ago
Hassan Abdulla
Jun 30, 2018

f ( x ) = 1 + x + x 2 + x 3 + + x 199 = x 200 1 x 1 let x = e i θ f ( x ) = 0 x 200 1 x 1 = 0 x 200 1 = 0 e 200 i θ = 1 θ = 2 k π 200 for k = 1 , 2 , 3 , , 199 x 1 k 0 a k = e 2 k π i 200 a k 200 = e 2 k π i k = 1 199 ( a k ) 200 = k = 1 199 e 2 k π i = k = 1 199 ( e 2 π i ) k = ( e 2 π i ) 200 e 2 π i e 2 π i 1 geometric progression lim x 2 π i ( e x ) 200 e x e x 1 = lim x 2 π i 200 ( e x ) 200 e x e x = lim x 2 π i 200 e 199 x 1 = 199 l’hospital rule \begin{aligned} &f(x)=1+x+x^2+x^3+ \cdots +x^{199} = \frac{x^{200}-1}{x-1}\\ &\text{let }x=e^{i \theta}\\ &f(x)=0\Leftrightarrow \frac{x^{200}-1}{x-1}=0\Leftrightarrow x^{200}-1=0\\ &e^{200 i\theta}=1\Leftrightarrow \theta=\frac{2k \pi}{200} \text{ for } k=1,2,3,\cdots,199 & x\neq1\Rightarrow k\neq0\\ &a_k=e^{\frac{2k \pi i}{200}}\Rightarrow a^{200}_k=e^{2k \pi i}\\ &\sum_{k=1}^{199}{(a_k)^{200}}=\sum_{k=1}^{199}{e^{2k \pi i}}= \color{#D61F06}\sum_{k=1}^{199}{\left ( e^{2\pi i} \right )^k}=\frac{\left ( e^{2\pi i} \right )^{200}-e^{2\pi i}}{e^{2\pi i}-1} & \color{#D61F06}\text{geometric progression}\\ &\lim_{x\rightarrow 2\pi i}\frac{\left ( e^x \right )^{200}-e^{x}}{e^{x}-1}=\lim_{x\rightarrow 2\pi i}\frac{200 \left ( e^x \right )^{200}-e^{x}}{e^{x}}=\lim_{x\rightarrow 2\pi i}200e^{199x}-1=199 & \text{l'hospital rule} \end{aligned}

You don't need to enter text in Latex. It is both difficult and not the standard used in Brilliant;org. You can check with other problems. Just use three terms in front 1 + x + x 2 1+x+x^2 , just one \cdots and one term at the end x 199 x^{199} as standards.

Chew-Seong Cheong - 2 years, 11 months ago
Prajjwal Shukla
Jul 5, 2018

Used objective approach

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...