Sum of sech....

Calculus Level 5

Evaluate the following summation.

n = 0 ( 1 ) n ( 2 n + 1 ) cosh [ ( n + 1 2 ) π ] \displaystyle\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)\cosh[(n+\frac{1}{2})\pi]}


The answer is 0.392699.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anirban Karan
Apr 17, 2017

Let, S = n = 0 ( 1 ) n ( 2 n + 1 ) cosh [ ( n + 1 2 ) π ] S=\displaystyle\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)\cosh[(n+\frac{1}{2})\pi]}

2 S = n = ( 1 ) n ( 2 n + 1 ) cosh [ ( n + 1 2 ) π ] = 1 2 n = ( 1 ) n ( n + 1 2 ) cosh [ ( n + 1 2 ) π ] \begin{aligned} \implies 2S=\displaystyle\sum_{n=-\infty}^{\infty}\frac{(-1)^n}{(2n+1)\cosh[(n+\frac{1}{2})\pi]}\\ =\frac{1}{2}\displaystyle\sum_{n=-\infty}^{\infty}\frac{(-1)^n}{(n+\frac{1}{2})\cosh[(n+\frac{1}{2})\pi]}\end{aligned}

S = 1 4 n = ( 1 ) n ( n + 1 2 ) cosh [ ( n + 1 2 ) π ] \implies S=\frac{1}{4}\displaystyle\sum_{n=-\infty}^{\infty}\frac{(-1)^n}{(n+\frac{1}{2})\cosh[(n+\frac{1}{2})\pi]}

Now, let us assume, S = n = ( 1 ) n f ( n + 1 2 ) f ( z ) = 1 4 z cosh ( z π ) S=\displaystyle\sum_{n=-\infty}^{\infty} (-1)^n f\Big(n+\frac{1}{2}\Big) \implies f(z)=\frac{1}{4z\cosh (z\pi)}

f ( z ) f(z) has simple poles at z = 0 , i ( m + 1 2 ) z=0, i(m+\frac{1}{2}) where m m is an integer [ as cosh ( i a ) = cos a ] \color{#3D99F6} [\text{as }\cosh(ia)=\cos a] .

Let us use the contour-integral-based formula for summation g ( z ) \forall g(z) , n = ( 1 ) n g ( n + 1 2 ) = ( residues of [ g ( z ) π sec ( π z ) ] at singularities of g ( z ) ) \color{#3D99F6}\displaystyle\sum_{n=-\infty}^{\infty} (-1)^n g\Big(n+\frac{1}{2}\Big)=\sum\Big(\text{residues of } [g(z)\pi \sec (\pi z)] \text{ at singularities of } g(z)\Big) In our case, residue of f ( z ) π sec ( π z ) f(z)\pi \sec (\pi z) at z = 0 z=0 is lim z 0 [ z 1 4 z cosh ( z π ) π sec ( π z ) ] = π 4 \displaystyle\lim_{z\rightarrow 0}\Big[z\cdot\frac{1}{4z\cosh (z\pi)}\cdot\pi \sec (\pi z)\Big]=\frac{\pi}{4} .

Similarly, residue of f ( z ) π sec ( π z ) f(z)\pi \sec (\pi z) at z = i ( m + 1 2 ) z= i(m+\frac{1}{2}) is lim z i ( m + 1 2 ) [ { z i ( m + 1 2 ) } 1 4 z cosh ( z π ) π sec ( π z ) ] = π sec [ i ( m + 1 2 ) π ] 4 i ( m + 1 2 ) lim z i ( m + 1 2 ) [ z i ( m + 1 2 ) cosh ( z π ) ] = π 4 i ( m + 1 2 ) cosh [ ( m + 1 2 ) π ] lim z i ( m + 1 2 ) [ 1 π sinh ( z π ) ] [ using L’Hospital’s Rule ] = 1 4 ( 1 ) m ( m + 1 2 ) cosh [ ( m + 1 2 ) π ] [ as sinh [ i ( m + 1 2 ) π ] = i sin [ ( m + 1 2 ) π ] = i ( 1 ) m ] \begin{aligned}&\lim_{z\rightarrow i(m+\frac{1}{2})}\Big[\big\{z- i(m+\frac{1}{2})\big\}\cdot\frac{1}{4z\cosh (z\pi)}\cdot\pi \sec (\pi z)\Big]&\\=&\frac{\pi\sec[i(m+\frac{1}{2})\pi]}{4i(m+\frac{1}{2})}\cdot\lim_{z\rightarrow i(m+\frac{1}{2})}\Big[\frac{z- i(m+\frac{1}{2})}{\cosh (z\pi)}\Big]&\\=&\frac{\pi}{4i(m+\frac{1}{2})\cosh[(m+\frac{1}{2})\pi]}\cdot\lim_{z\rightarrow i(m+\frac{1}{2})}\Big[\frac{1}{\pi\sinh(z\pi)}\Big]\quad\small \color{#3D99F6} [\text{using L'Hospital's Rule}] &\\=&-\frac{1}{4}\cdot\frac{(-1)^m}{(m+\frac{1}{2})\cosh[(m+\frac{1}{2})\pi]}\quad\small \color{#3D99F6} [\text{as } \sinh[i(m+\frac{1}{2})\pi]=i\sin[(m+\frac{1}{2})\pi]=i(-1)^m] \end{aligned} So, using the above formula, S = π 4 1 4 m = ( 1 ) m ( m + 1 2 ) cosh [ ( m + 1 2 ) π ] = π 4 S 2 S = π 4 S = π 8 = 0.392699 \begin{aligned}& S=\frac{\pi}{4}-\frac{1}{4}\sum_{m=-\infty}^{\infty}\frac{(-1)^m}{(m+\frac{1}{2})\cosh[(m+\frac{1}{2})\pi]}=\frac{\pi}{4}-S&\\&\implies 2S=\frac{\pi}{4}&\\& \implies\boxed{S=\frac{\pi}{8}=0.392699}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...