Sum of series

Algebra Level 3

1 + 2 + 3 4 + 5 + 6 + 7 + 8 9 + 10 + 11 + 12 + 13 + 14 + 15 16 + 17 + . + 23 + 24 25 + 26 -1+2+3-4+5+6+7+8 \\ -9+10+11+12+13+14+15-16+17+…….+23 \\ +24-25+26 \ldots

What is sum of first 100th term of this series?


The answer is 4280.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kay Xspre
Mar 6, 2016

We simply rewrote this series to f ( x ) = { x if x N x if x N f(x) = \begin{cases} x & \text{ if } \sqrt{x} \notin \mathbb{N} \\ -x & \text{ if } \sqrt{x} \in \mathbb{N} \end{cases} For 1 x 100 1 \leq x \leq 100 , there will be 10 cases where x N \sqrt{x} \in \mathbb{N} . We can then wrote the series to

( 1 + 2 + 3 + 4 + + 100 ) 2 ( 1 + 4 + 9 + 16 + + 100 ) (1+2+3+4+\dots+100)-2(1+4+9+16+\dots+100)

Which is equal to 100 ( 101 ) 2 2 ( 10 ( 11 ) ( 21 ) 6 ) = 5050 2 ( 385 ) = 4280 \frac{100(101)}{2}-2(\frac{10(11)(21)}{6}) = 5050-2(385) = 4280

Murad Al Wajed
Mar 7, 2016

Let the sum be S S . Then we have:

S = 1 + 2 + 3 + . . . + 8 9 + 10 + . . . + 15 16 + 17 + . . . + 24 25 + 26 + . . . + 99 100 = ( 1 + 2 + 3 + 4 + . . . + 100 ) 2 ( 1 2 + 2 2 + 3 2 + . . . + 1 0 2 ) = n = 1 100 n 2 n = 1 10 n 2 = 100 × 101 2 2 ( 10 × 11 × 21 6 ) = 5050 2 ( 385 ) = 4280 \begin{aligned} S & = \color{#D61F06}{-1} + 2 + 3 +...+ 8 \color{#D61F06}{-9} + 10 +... + 15 \color{#D61F06}{-16} + 17+... + 24 \color{#D61F06}{-25} + 26 + ... + 99 \color{#D61F06}{-100} \\ & = (1+2+3+4+...+100) - 2\color{#D61F06}{(1^2 + 2^2 + 3^2 + ... + 10^2)} \\ & = \sum_{n=1}^{100} n - 2 \color{#D61F06}{\sum_{n=1}^{10} n^2} \\ & = \frac{100\times 101}{2} - 2 \color{#D61F06}{\left(\frac{10\times 11 \times 21}{6} \right)} \\ & = 5050 - 2 \color{#D61F06}{\left(385 \right)} \\ & = \boxed{4280} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...