sum_02

Calculus Level 5

k = 1 sin k k = π a b c \large \sum_{k=1}^\infty \dfrac{\sin k}k = \dfrac{\pi^a - b } c

If the equation above holds true for positive integers a , b a,b and c c , find a + b + c a+b+c .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 16, 2017

Similar solution with @Hassan Abdulla's

S = k = 1 sin k k By Euler’s formula e i θ = cos θ + i sin θ = k = 1 ( e i k ) k where ( z ) is the imaginary part of z . = ( k = 1 e i k k ) By Maclaurin series ln ( 1 x ) = n = 1 x n n = ( ln ( 1 e i ) ) By Euler’s formula = ( ln ( 1 cos 1 i sin 1 ) ) = ( ln ( ( 1 cos 1 ) 2 + sin 2 1 ( 1 cos 1 i sin 1 ( 1 cos 1 ) 2 + sin 2 1 ) ) ) = ( ln ( 2 2 cos 1 ( 1 cos 1 2 2 cos 1 + i sin 1 2 2 cos 1 ) ) ) = ( ln ( 2 2 cos 1 exp ( i tan 1 sin 1 1 cos 1 ) ) ) where exp ( x ) = e x = ( ln ( 2 2 cos 1 ) ln ( exp ( i tan 1 sin 1 1 cos 1 ) ) ) = ( ln ( 2 2 cos 1 ) + i tan 1 sin 1 1 cos 1 ) = tan 1 sin 1 1 cos 1 Using half-angle tangent substitution = tan 1 2 t 1 + t 2 1 1 t 2 1 + t 2 = tan 1 1 t = tan 1 1 tan 1 2 and let t = tan 1 2 = tan 1 cot 1 2 = π 2 tan 1 tan 1 2 = π 1 2 \begin{aligned} S & = \sum_{k=1}^\infty \frac {\sin k}k & \small \color{#3D99F6} \text{By Euler's formula } e^{i \theta} = \cos \theta + i \sin \theta \\ & = \sum_{k=1}^\infty \frac {\Im (e^{ik})}k & \small \color{#3D99F6} \text{where } \Im (z) \text{ is the imaginary part of }z. \\ & = \Im \left(\sum_{k=1}^\infty \frac {e^{ik}}k \right) & \small \color{#3D99F6} \text{By Maclaurin series } \ln (1-x) = - \sum_{n=1}^\infty \frac {x^n}n \\ & = \Im \left(- \ln (1-e^i) \right) & \small \color{#3D99F6} \text{By Euler's formula} \\ & = \Im \left(- \ln (1-\cos 1 - i\sin 1) \right) \\ & = \Im \left(- \ln \left(\sqrt{(1-\cos 1)^2+\sin^2 1}\left(\frac {1-\cos 1 - i\sin 1}{\sqrt{(1-\cos 1)^2+\sin^2 1}} \right) \right) \right) \\ & = \Im \left(- \ln \left(\sqrt{2-2\cos 1}\left(\frac {1-\cos 1}{\sqrt{2-2\cos 1}} + i \frac {-\sin 1}{\sqrt{2-2\cos 1}} \right) \right) \right) \\ & = \Im \left(- \ln \left(\sqrt{2-2\cos 1}\ {\color{#3D99F6}\exp} \left(i \tan^{-1} \frac {-\sin 1}{1-\cos 1} \right) \right) \right) & \small \color{#3D99F6} \text{where }\exp(x) = e^x \\ & = \Im \left(- \ln \left(\sqrt{2-2\cos 1}\right) - \ln \left(\exp \left(i \tan^{-1} \frac {\sin 1}{1-\cos 1} \right) \right) \right) \\ & = \Im \left(- \ln \left(\sqrt{2-2\cos 1}\right) + i \tan^{-1} \frac {\sin 1}{1-\cos 1} \right) \\ & = \tan^{-1} \frac {\sin 1}{1-\cos 1} & \small \color{#3D99F6} \text{Using half-angle tangent substitution} \\ & = \tan^{-1} \frac {\frac {2t}{1+t^2}}{1-\frac {1-t^2}{1+t^2}} = \tan^{-1} \frac 1t = \tan^{-1} \frac 1{\tan \frac 12} & \small \color{#3D99F6} \text{and let }t = \tan \frac 12 \\ & = \tan^{-1} \cot \frac 12 = \frac \pi 2 - \tan^{-1} \tan \frac 12 \\ & = \boxed{\dfrac {\pi - 1}2} \end{aligned}

a + b + c = 1 + 1 + 2 = 4 \implies a+b+c = 1+1+2 = \boxed{4}

How did you get from line 5 to 6?

Akshat Sharda - 3 years, 8 months ago

Log in to reply

I have added two lines to explain. Hope that it helps.

Chew-Seong Cheong - 3 years, 8 months ago

Log in to reply

Thanks! for your help.

Akshat Sharda - 3 years, 8 months ago
敬全 钟
Sep 17, 2017

It is not hard to observe that the series given is actually the Fourier series expansion of the function f ( x ) = π x 2 f(x)=\frac{\pi-x}{2} for x ( 0 , 2 π ) x\in(0,2\pi) in disguise, i.e. k = 1 sin k x k = π x 2 . \sum^{\infty}_{k=1}\frac{\sin kx}{k}=\frac{\pi-x}{2}. Substituting x = 1 x=1 yields the final result.

Hassan Abdulla
Sep 15, 2017

let I= k = 1 sin ( k ) k \sum _{ k=1 }^{ \infty }{ \frac { \sin { \left( k \right) } }{ k } }

I= k = 1 I m { e i k } k \sum _{ k=1 }^{ \infty }{ \frac { Im\left\{ { e }^{ ik } \right\} }{ k } }

I= I m { k = 1 e i k k } = I m { k = 1 ( e i ) k k } Im\left\{ \sum _{ k=1 }^{ \infty }{ \frac { { e }^{ ik } }{ k } } \right\} =Im\left\{ \sum _{ k=1 }^{ \infty }{ \frac { { \left( { e }^{ i } \right) }^{ k } }{ k } } \right\}

I= I m { ln ( 1 e i ) } Im\left\{ -\ln { \left( 1-{ e }^{ i } \right) } \right\}

let z= 1 e i = ( 1 cos ( 1 ) ) + i ( sin ( 1 ) ) 1-{ e }^{ i }=\left( 1-\cos { \left( 1 \right) } \right) +i\left( -\sin { \left( 1 \right) } \right)

I= m { ln ( z ) } m\left\{ -\ln { \left( z \right) } \right\}

I= I m { ( ln ( z ) + i θ ) } Im\left\{ -\left( \ln { \left( \left| z \right| \right) +i } \theta \right) \right\} * \\ definition of logarithm in complex *

I= θ = tan 1 ( sin ( 1 ) 1 cos ( 1 ) ) = tan 1 ( sin ( 1 ) 1 cos ( 1 ) ) -\theta =-\tan ^{ -1 }{ \left( \frac { -\sin { \left( 1 \right) } }{ 1-\cos { \left( 1 \right) } } \right) } =\tan ^{ -1 }{ \left( \frac { \sin { \left( 1 \right) } }{ 1-\cos { \left( 1 \right) } } \right) }

Now

1 cos ( 1 ) = 2 1 cos ( 2 1 2 ) 2 = 2 sin 2 ( 1 2 ) 1-\cos { \left( 1 \right) } =2\cdot \frac { 1-\cos { \left( 2\cdot \frac { 1 }{ 2 } \right) } }{ 2 } =2\sin ^{ 2 }{ \left( \frac { 1 }{ 2 } \right) } * \\ since sin 2 ( x ) = 1 cos ( 2 x ) 2 \sin ^{ 2 }{ \left( x \right) } =\frac { 1-\cos { \left( 2x \right) } }{ 2 } *

and

sin ( 1 ) = sin ( 2 1 2 ) = 2 sin ( 1 2 ) cos ( 1 2 ) \sin { \left( 1 \right) } =\sin { \left( 2\cdot \frac { 1 }{ 2 } \right) } =2\sin { \left( \frac { 1 }{ 2 } \right) } \cos { \left( \frac { 1 }{ 2 } \right) }

so I= tan 1 ( 2 sin ( 1 2 ) cos ( 1 2 ) 2 sin 2 ( 1 2 ) ) \tan ^{ -1 }{ \left( \frac { 2\sin { \left( \frac { 1 }{ 2 } \right) } \cos { \left( \frac { 1 }{ 2 } \right) } }{ 2\sin ^{ 2 }{ \left( \frac { 1 }{ 2 } \right) } } \right) }

I= tan 1 ( cot ( 1 2 ) ) \tan ^{ -1 }{ \left( \cot { \left( \frac { 1 }{ 2 } \right) } \right) }

I= tan 1 ( tan ( π 2 1 2 ) ) \tan ^{ -1 }{ \left( \tan { \left( \frac { \pi }{ 2 } -\frac { 1 }{ 2 } \right) } \right) }

I= π 1 1 2 \frac { \pi ^{ 1 }-1 }{ 2 }

a=1,b=1 and c=2

a+b+c=4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...