Sum of smallest differences

4 x 2 + x = 5 y 2 + y 4x^2+x=5y^2+y Suppose that x x and y y are natural numbers such that the equation above is fulfilled. If N N is the sum of three smallest possible values of x y x-y , find sum of digits of N N .

This problem is original and belongs to this set .


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kazem Sepehrinia
Apr 6, 2015

It is clear that x > y x>y and x y x-y is a natural number. Let z = x y z=x-y , equation becomes 4 ( y + z ) 2 + y + z = 5 y 2 + y 4 y 2 + 8 y z + 4 z 2 + z = 5 y 2 y 2 y ( 8 z ) ( 4 z 2 + z ) = 0 4(y+z)^2+y+z=5y^2+y \\ 4y^2+8yz+4z^2+z=5y^2 \\ y^2-y(8z)-(4z^2+z)=0 This equation is a quadratic in terms of y y and its discriminant must be a perfect square, hence Δ = ( 4 z ) 2 + ( 4 z 2 + z ) = 20 z 2 + z = z ( 20 z + 1 ) = n 2 \Delta'=(4z)^2+(4z^2+z)=20z^2+z=z(20z+1)=n^2 Since gcd ( z , 20 z + 1 ) = 1 \gcd(z,20z+1)=1 and product of them is a perfect square both of them must be perfect squares which means z = b 2 20 z + 1 = a 2 z=b^2 \\20z+1=a^2 Combining last two equations gives 20 b 2 + 1 = a 2 20b^2+1=a^2 or a 2 20 b 2 = 1 a^2-20b^2=1 Which is the well-known Pell's equation. Fundamental solution of the equation is ( a 1 , b 1 ) = ( 9 , 2 ) (a_1,b_1)=(9,2) and a k = 1 2 ( ( 9 + 2 20 ) k + ( 9 2 20 ) k ) b k = 1 2 20 ( ( 9 + 2 20 ) k ( 9 2 20 ) k ) a_k = \frac{1}{2}\left((9 + 2\sqrt{20})^k + (9 -2 \sqrt{20})^k \right) \\ b_k = \frac{1}{2 \sqrt{20}}\left((9 + 2\sqrt{20})^k - (9 -2 \sqrt{20})^k \right) Which gives us ( a 2 , b 2 ) = ( 161 , 36 ) (a_2,b_2)=(161,36) and ( a 3 , b 3 ) = ( 2889 , 646 ) (a_3,b_3)=(2889,646) . Therefore N = k = 1 3 ( x y ) k = k = 1 3 z k = b 1 2 + b 2 2 + b 3 2 = 2 2 + 3 6 2 + 64 6 2 = 418616 N=\sum_{k=1}^{3}(x-y)_k=\sum_{k=1}^{3}z_k=b_1^2+b_2^2+b_3^2=2^2+36^2+646^2=418616 Sum of digits of 418616 418616 is 26 26 .

Kazem, you are really good at solving Diophantine Equations. Can you suggest a good book on this subject ?

Venkata Karthik Bandaru - 6 years, 1 month ago

Log in to reply

Thank you Karthik, find this book: http://www.springer.com/gp/book/9780817645489

Kazem Sepehrinia - 6 years, 1 month ago

Log in to reply

Thanks a lot :), grateful to you !

Venkata Karthik Bandaru - 6 years, 1 month ago
Jesse Nieminen
Oct 1, 2015

4 x 2 + x = 5 y 2 + y 4x^2 + x = 5y^2 + y , where x x and y y are natural numbers.

Solve for x using the quadratic formula: x = 1 ± 80 y 2 + 16 y + 1 8 x = \frac{-1 \pm \sqrt{80y^2 + 16y + 1}}{8}

x x cannot be negative so: x = 1 + 80 y 2 + 16 y + 1 8 x = \frac{-1 + \sqrt{80y^2 + 16y + 1}}{8}

If x x is an integer, then 80 y 2 + 16 y + 1 1 \sqrt{80y^2 + 16y + 1} \equiv 1 (mod 8 8 ) and 80 y 2 + 16 y + 1 = m 2 80y^2 + 16y + 1 = m^2 , where m is natural number.

Solve for y y using the quadratic formula: y = 16 ± 320 m 2 64 160 y = \frac{-16 \pm \sqrt{320m^2 - 64}}{160}

y y cannot be negative so: y = 16 + 320 m 2 64 160 = 2 + 5 m 2 1 20 y = \frac{-16 + \sqrt{320m^2 - 64}}{160} = \frac{-2 + \sqrt{5m^2 - 1}}{20}

If y y is an integer then 5 m 2 1 = 2 \sqrt{5m^2 - 1} = 2 (mod 20 20 ) and 5 m 2 1 = s 2 5m^2 - 1 = s^2 , where s is natural number.

5 m 2 1 = s 2 s 2 5 m 2 = 1 5m^2 - 1 = s^2 \Rightarrow s^2 - 5m^2 = -1

Now we have a Pell's Equation.

We can easily find that s = 2 , m = 1 s = 2, m = 1 is the fundamental solution.

By using the fundamental solution we can find that the 7 7 smallest solutions for m are ( 1 , 17 , 305 , 5473 , 98209 , 1762289 , 31622993 ) (1, 17, 305, 5473, 98209, 1762289, 31622993)

5 m 2 1 = 2 \sqrt{5m^2 - 1} = 2 (mod 20 20 ) must be true so the 4 4 smallest solutions are ( 1 , 305 , 98209 , 31622993 ) (1, 305, 98209, 31622993)

Now corresponding values of y are ( 0 , 34 , 10980 , 3535558 ) (0, 34, 10980, 3535558) .

y y cannot be 0 0 so possible values are ( 34 , 10980 , 3535558 ) (34, 10980, 3535558)

80 y 2 + 16 y + 1 1 \sqrt{80y^2 + 16y + 1} \equiv 1 (mod 8 8 ) is true for the 3 3 values of y y

Now corresponding values of x x are (38, 12276, 3952874)

Now N = ( 38 34 ) + ( 12276 10980 ) + ( 3952874 3535558 ) = 418616 N = (38 - 34) + (12276 - 10980) + (3952874 - 3535558) = 418616

Sum of the digits of N = 4 + 1 + 8 + 6 + 1 + 6 = 26 N = 4 + 1 + 8 + 6 + 1 + 6 = \boxed {26}

Thanks for the solution :)

Kazem Sepehrinia - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...