Sum of Some Digits

M = ( 99 × 1 0 11 + 1 ) 987654321 \large M=\big(99\times10^{11}+1\big)^{987654321}

What is the sum of last 22 digits of M ? M?


The answer is 82.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We know by Binomial Theorem

( x + 1 ) m = x m + m C 1 x m 1 + m C 2 x m 2 + + m C m 2 x 2 + m C m 1 x + 1 h e n c e , ( ( a × 1 0 n ) + 1 ) m = ( a × 1 0 n ) m + m C 1 ( a × 1 0 n ) m 1 + m C 2 ( a × 1 0 n ) m 2 + + m C m 2 ( a × 1 0 n ) 2 + m C m 1 ( a × 1 0 n ) + 1 = A + m C m 2 ( a × 1 0 n ) 2 + m C m 1 ( a × 1 0 n ) + 1 where, A represents remaining terms = A + m ( m 1 ) 2 ( a × 1 0 n ) 2 + m a × 1 0 n + 1 (x+1)^m = x^m + mC_1\cdot x^{m-1} + mC_2\cdot x^{m-2} + \cdots + mC_{m-2}\cdot x^2 + mC_{m-1}\cdot x + 1 \\ hence, \\ ((a\times10^n)+1)^m=(a\times10^n)^m + mC_1\cdot (a\times10^n)^{m-1} + mC_2\cdot (a\times10^n)^{m-2} + \cdots + mC_{m-2}\cdot (a\times10^n)^2 + mC_{m-1}\cdot (a\times10^n) + 1 \\ = A +mC_{m-2}\cdot (a\times10^n)^2+ mC_{m-1}\cdot (a\times10^n) + 1 \text{ where, A represents remaining terms}\\ =A +\frac{m(m-1)}{2}\cdot (a\times10^n)^2+ m\cdot a\times10^n + 1

In our case:

a = 99 , n = 11 , m = 987654321 ( 99 × 1 0 11 + 1 ) 987654321 = A + 987654321 987654322 2 × 1 0 22 + 987654321 99 × 1 0 11 + 1 o r , ( 99 × 1 0 11 + 1 ) 987654321 = A + 987654321 987654322 2 × 1 0 22 + 97777777779 × 1 0 11 + 1 a=99, n=11, m=987654321 \\ (99\times10^{11}+1)^{987654321}=A+\frac{987654321\cdot987654322}{2}\times10^{22}+987654321\cdot99\times10^{11}+1 \\ or, \\ (99\times10^{11}+1)^{987654321}=A+\frac{987654321\cdot987654322}{2}\times10^{22}+97777777779\times10^{11}+1

From this it is clear that last 22 digits are:

97777777779 × 1 0 11 + 1 97777777779\times10^{11}+1

hence, the needed sum = 82 82

Giorgos K.
Mar 16, 2018

Mathematica

Tr@IntegerDigits@PowerMod[9*10^11+1,987654321,10^22]

returns 82

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...