This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We know by Binomial Theorem
( x + 1 ) m = x m + m C 1 ⋅ x m − 1 + m C 2 ⋅ x m − 2 + ⋯ + m C m − 2 ⋅ x 2 + m C m − 1 ⋅ x + 1 h e n c e , ( ( a × 1 0 n ) + 1 ) m = ( a × 1 0 n ) m + m C 1 ⋅ ( a × 1 0 n ) m − 1 + m C 2 ⋅ ( a × 1 0 n ) m − 2 + ⋯ + m C m − 2 ⋅ ( a × 1 0 n ) 2 + m C m − 1 ⋅ ( a × 1 0 n ) + 1 = A + m C m − 2 ⋅ ( a × 1 0 n ) 2 + m C m − 1 ⋅ ( a × 1 0 n ) + 1 where, A represents remaining terms = A + 2 m ( m − 1 ) ⋅ ( a × 1 0 n ) 2 + m ⋅ a × 1 0 n + 1
In our case:
a = 9 9 , n = 1 1 , m = 9 8 7 6 5 4 3 2 1 ( 9 9 × 1 0 1 1 + 1 ) 9 8 7 6 5 4 3 2 1 = A + 2 9 8 7 6 5 4 3 2 1 ⋅ 9 8 7 6 5 4 3 2 2 × 1 0 2 2 + 9 8 7 6 5 4 3 2 1 ⋅ 9 9 × 1 0 1 1 + 1 o r , ( 9 9 × 1 0 1 1 + 1 ) 9 8 7 6 5 4 3 2 1 = A + 2 9 8 7 6 5 4 3 2 1 ⋅ 9 8 7 6 5 4 3 2 2 × 1 0 2 2 + 9 7 7 7 7 7 7 7 7 7 9 × 1 0 1 1 + 1
From this it is clear that last 22 digits are:
9 7 7 7 7 7 7 7 7 7 9 × 1 0 1 1 + 1
hence, the needed sum = 8 2