Sum of Squared Roots

Algebra Level 4

There exists a monic 10th-degree polynomial f ( x ) f(x) whose graph intersects the graph of g ( x ) = x 9 3 x 8 + 17 x g(x) = x^9 - 3x^8 + 17x at all x { 1 , 2 , 3 , , 10 } x \in \{1, 2, 3, \cdots , 10\} .

If the roots of f ( x ) f(x) are r 1 , r 2 , r 3 , , r 10 r_1, r_2, r_3, \ldots , r_{10} , find i = 1 10 r i 2 \displaystyle \sum_{i = 1}^{10} r_i^2 .


The answer is 282.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Braden Dean
Dec 30, 2020

Since f ( x ) f(x) is monic and equal to x 9 3 x 8 + 17 x x^9 - 3x^8 + 17x for x { 1 , 2 , . . . , 9 , 10 } x \in \{1, 2, ... , 9, 10\} , we know:

f ( x ) x 9 + 3 x 8 17 x = ( x 1 ) ( x 2 ) . . . ( x 10 ) f(x) - x^9 + 3x^8 - 17x = (x-1)(x-2)...(x-10)

We can see then that both sides of the equation are a 10th-degree polynomial, therefore:

f ( x ) = ( x 1 ) ( x 2 ) . . . ( x 10 ) + x 9 3 x 8 + 17 x f(x) = (x-1)(x-2)...(x-10) + x^9 - 3x^8 +17x

Since we now know f ( x ) f(x) , we can use vieta to find the sum of its squared roots:

r 1 2 + r 2 2 + . . . + r 10 2 = ( r 1 + r 2 + . . . + r 10 ) 2 2 ( r 1 r 2 + r 1 r 3 + . . . + r 9 r 10 ) r_1^2 + r_2^2 + ... + r_{10}^2 =(r_1 + r_2 + ... + r_{10})^2 - 2(r_1r_2 + r_1r_3 + ... + r_9r_{10})

We can see in order to find the sum of the squared roots, we need to know the coefficient of the x 9 x^9 term and the x 8 x^8 term.

x 9 x^9 term of ( x 1 ) ( x 2 ) . . . ( x 10 ) (x-1)(x-2)...(x-10) :

i = 1 10 i = 55 \displaystyle\sum_{i = 1}^{10} -i = -55

Adding the lone x 9 x^9 :

55 x 9 + x 9 = 54 x 9 -55x^9 + x^9 = -54x^9

x 8 x^8 term of ( x 1 ) ( x 2 ) . . . ( x 10 ) (x-1)(x-2)...(x-10) :

1 ( 2 + 3 + . . . + 10 ) \hspace{10pt}1(2 + 3 + ... + 10)

+ + 2 ( 3 + 4 + . . . + 10 ) 2(3 + 4 + ... + 10)

+ + 3 ( 4 + 5 + . . . + 10 ) 3(4 + 5 + ... + 10)

\hspace{40pt} \vdots

+ + 9 ( 10 ) 9(10)

= i = 1 10 i ( 55 i 2 + i 2 ) = \displaystyle\sum_{i = 1}^{10} i(55 - \frac{i^2 + i}{2})

= i = 1 10 55 i 1 2 i 2 1 2 i 3 = \displaystyle\sum_{i = 1}^{10} 55i - \frac{1}{2}i^2 - \frac{1}{2}i^3

= ( 55 ) ( 10 ) ( 11 ) 2 ( 10 ) ( 11 ) ( 21 ) 12 ( 10 ) 2 ( 11 ) 2 8 = \frac{(55)(10)(11)}{2} - \frac{(10)(11)(21)}{12} - \frac{(10)^2(11)^2}{8}

= 3025 192.5 1512.5 = 3025 - 192.5 - 1512.5

= 1320 = 1320

Adding the 3 x 8 -3x^8 :

1320 x 8 3 x 8 = 1317 x 8 1320x^8 - 3x^8 = 1317x^8

Therefore,

i = 1 10 r i 2 = ( 54 ) 2 2 1317 = 282 \displaystyle\sum_{i = 1}^{10} r_i^2 = (-54)^2 - 2\cdot1317 = \fbox{282}

Chew-Seong Cheong
Dec 30, 2020

We note that

f ( x ) g ( x ) = ( x 1 ) ( x 2 ) ( x 3 ) ( x 10 ) f ( x ) x 9 + 3 x 8 17 x = x 10 55 x 9 + 1320 x 8 + k = 1 10 k f ( x ) = x 10 54 x 9 + 1317 x 8 + k = 1 10 k \begin{aligned} f(x) - g(x) & = (x-1)(x-2)(x-3) \cdots (x-10) \\ f(x) - x^9 + 3x^8 - 17x & = x^{10} - 55x^9 + 1320x^8 - \cdots + \prod_{k=1}^{10} k \\ \implies f(x) & = x^{10} - \blue{54}x^9 + \red{1317} x^8 - \cdots + \prod_{k=1}^{10} k \end{aligned}

By Vieta's formula , i = 1 10 r i = 54 \displaystyle \sum_{i=1}^{10} r_i = \blue{54} and i j 10 r i r j = 1317 \displaystyle \sum_{i \ne j}^{10} r_ir_j = \red{1317} and by Newton's sums or identities ,

i = 1 10 r i 2 = ( i = 1 10 r i ) 2 2 i j 10 r i r j = 5 4 2 2 × 1317 = 282 \sum_{i=1}^{10} r_i^2 = \left(\sum_{i=1}^{10} r_i \right)^2 - 2 \sum_{i \ne j}^{10} r_i r_j = 54^2 - 2\times 1317 = \boxed{282}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...