Sum of Square,Square of Sum

Calculus Level 4

lim n n A k = 0 n ( n k ) 2 ( k = 0 n ( n k ) ) 2 = B \lim_{n\to\infty} \frac{n^A \displaystyle \sum_{k=0}^{n} {{n}\choose{k}}^2}{{\displaystyle \left(\sum_{k=0}^{n} {{n}\choose{k}}\right)}^{2}}=B

The limit B B exists and it is not zero. Find A + B A+B .


The answer is 1.06419.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 20, 2018

Relevant wiki: Stirling's Formula

B = lim n n A k = 0 n ( n k ) 2 ( k = 0 n ( n k ) ) 2 = lim n n A ( 2 n n ) ( 2 n ) 2 = lim n n A ( 2 n ) ! 2 2 n ( n ! ) 2 By Stirling’s formula: n ! 2 π n ( n e ) n = lim n n A 4 π n ( 2 n e ) 2 n 2 2 n ( 2 π n ( n e ) n ) 2 = lim n 2 2 n + 1 π 1 2 n A + 1 2 + 2 n e 2 n 2 1 + 2 n π n 1 + 2 n e 2 n = lim n n A + 1 2 π n For B to exist and 0 , A = 1 2 = 1 π \begin{aligned} B & = \lim_{n \to \infty} \frac {n^A \sum_{k=0}^n \binom nk^2}{\left(\sum_{k=0}^n \binom nk\right)^2} \\ & = \lim_{n \to \infty} \frac {n^A \binom {2n}n}{\left(2^n\right)^2} \\ & = \lim_{n \to \infty} \frac {n^A (2n)!}{2^{2n} (n!)^2} & \small \color{#3D99F6} \text{By Stirling's formula: }n! \sim \sqrt{2\pi n}\left(\frac ne\right)^n \\ & = \lim_{n \to \infty} \frac {n^A \sqrt{4\pi n}\left(\frac {2n}e\right)^{2n}}{2^{2n} \left(\sqrt{2\pi n}\left(\frac ne\right)^n\right)^2} \\ & = \lim_{n \to \infty} \frac {2^{2n+1}\pi^\frac 12 n^{A+\frac 12 + 2n}e^{2n}}{2^{1+2n}\pi n^{1+ 2n}e^{2n}} \\ & = \lim_{n \to \infty} \frac {n^{A+\frac 12}}{\sqrt \pi n} & \small \color{#3D99F6} \text{For }B \text{ to exist and }\ne 0, A = \frac 12 \\ & = \frac 1{\sqrt \pi} \end{aligned}

Therefore, A + B = 1 2 + 1 π 1.064 A+B = \dfrac 12 + \dfrac 1{\sqrt \pi} \approx \boxed{1.064} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...