Sum of sums

Algebra Level 4

Evaluate:- i = 1 100 j = 1 i k = 1 j ( x 0 × k ) \sum_{i=1}^{100} \sum_{j=1}^i\sum_{k=1}^j(x^{0×k})


The answer is 171700.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

U Z
Nov 17, 2014

i = 1 100 j = 1 i ( 1 + 1 + . . . . . j t i m e s ) \displaystyle \sum_{i = 1}^{100} \sum_{j = 1}^{i} ( 1 + 1 + ..... j times)

i = 1 100 ( 1 + 2 + 3 + . . . . . . + i ) = ( i ) ( i + 1 ) 2 = i 2 + i 2 \displaystyle \sum_{i = 1}^{100}( 1 + 2 + 3 +...... + i) = \frac{(i)(i + 1)}{2} = \frac{i^{2} + i}{2}

1 2 ( i = 1 100 i 2 + i = 1 100 i ) \frac{1}{2}(\displaystyle \sum_{i = 1}^{100} i^{2} + \displaystyle \sum_ {i=1}^{100}i)

1 2 ( 338350 + 5050 ) = 171700 \frac{1}{2}(338350 + 5050) = 171700

k = 1 j \sum_{k=1}^j x 0 k x^{0*k} = j j

Parth Lohomi - 6 years, 6 months ago
Chew-Seong Cheong
Nov 17, 2014

i = 1 100 j = 1 i k = 1 j ( x 0 × k ) = i = 1 100 j = 1 i j = i = 1 100 i ( i + 1 ) 2 \sum _{i=1} ^{100} {\sum _{j=1} ^{i} {\sum _{k=1} ^{j} {(x^{0\times k})}}} = \sum _{i=1} ^{100} {\sum _{j=1} ^{i} {j}} = \sum _{i=1} ^{100} {\frac {i (i+1)}{2}} = 1 2 ( 100 × 101 × 201 6 + 100 × 101 2 ) = \frac {1}{2} \left( \frac {100\times 101\times 201} {6} + \frac {100\times 101}{2} \right) = 1 2 × ( 338350 + 5050 ) = 171700 = \frac {1}{2} \times \left( 338350 + 5050 \right) = \boxed {171700}

Sorry but Typing the same again

sandeep Rathod - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...